scholarly journals Depth and Stanley depth of the edge ideals of the powers of paths and cycles

2019 ◽  
Vol 27 (3) ◽  
pp. 113-135
Author(s):  
Zahid Iqbal ◽  
Muhammad Ishaq

AbstractLet k be a positive integer. We compute depth and Stanley depth of the quotient ring of the edge ideal associated to the kth power of a path on n vertices. We show that both depth and Stanley depth have the same values and can be given in terms of k and n. If n≣0, k + 1, k + 2, . . . , 2k(mod(2k + 1)), then we give values of depth and Stanley depth of the quotient ring of the edge ideal associated to the kth power of a cycle on n vertices and tight bounds otherwise, in terms of n and k. We also compute lower bounds for the Stanley depth of the edge ideals associated to the kth power of a path and a cycle and prove a conjecture of Herzog for these ideals.

2012 ◽  
Vol 49 (4) ◽  
pp. 501-508 ◽  
Author(s):  
Muhammad Ishaq ◽  
Muhammad Qureshi

We give an upper bound for the Stanley depth of the edge ideal I of a k-partite complete graph and show that Stanley’s conjecture holds for I. Also we give an upper bound for the Stanley depth of the edge ideal of a s-uniform complete bipartite hypergraph.


2021 ◽  
Vol 28 (2) ◽  
Author(s):  
Nursel Erey ◽  
Takayuki Hibi

Let $I(G)^{[k]}$ denote the $k$th squarefree power of the edge ideal of $G$. When $G$ is a forest, we provide a sharp upper bound for the regularity of $I(G)^{[k]}$ in terms of the $k$-admissable matching number of $G$. For any positive integer $k$, we classify all forests $G$ such that $I(G)^{[k]}$ has linear resolution. We also give a combinatorial formula for the regularity of $I(G)^{[2]}$ for any forest $G$.


2018 ◽  
Vol 25 (04) ◽  
pp. 567-578
Author(s):  
Kazunori Matsuda

Herzog, Hibi, Hreindóttir et al. introduced the class of closed graphs, and they proved that the binomial edge ideal JG of a graph G has quadratic Gröbner bases if G is closed. In this paper, we introduce the class of weakly closed graphs as a generalization of the closed graph, and we prove that the quotient ring S/JG of the polynomial ring [Formula: see text] with K a field and [Formula: see text] is F-pure if G is weakly closed. This fact is a generalization of Ohtani’s theorem.


10.37236/3689 ◽  
2013 ◽  
Vol 20 (4) ◽  
Author(s):  
Sohail Zafar ◽  
Zohaib Zahid

We study the Betti numbers of binomial edge ideal associated to some classes of graphs with large Castelnuovo-Mumford regularity. As an application we give several lower bounds of the Castelnuovo-Mumford regularity of arbitrary graphs depending on induced subgraphs.


2019 ◽  
Vol 18 (10) ◽  
pp. 1950184 ◽  
Author(s):  
Mike Janssen ◽  
Thomas Kamp ◽  
Jason Vander Woude

Given a nontrivial homogeneous ideal [Formula: see text], a problem of great recent interest has been the comparison of the [Formula: see text]th ordinary power of [Formula: see text] and the [Formula: see text]th symbolic power [Formula: see text]. This comparison has been undertaken directly via an exploration of which exponents [Formula: see text] and [Formula: see text] guarantee the subset containment [Formula: see text] and asymptotically via a computation of the resurgence [Formula: see text], a number for which any [Formula: see text] guarantees [Formula: see text]. Recently, a third quantity, the symbolic defect, was introduced; as [Formula: see text], the symbolic defect is the minimal number of generators required to add to [Formula: see text] in order to get [Formula: see text]. We consider these various means of comparison when [Formula: see text] is the edge ideal of certain graphs by describing an ideal [Formula: see text] for which [Formula: see text]. When [Formula: see text] is the edge ideal of an odd cycle, our description of the structure of [Formula: see text] yields solutions to both the direct and asymptotic containment questions, as well as a partial computation of the sequence of symbolic defects.


10.37236/1525 ◽  
2000 ◽  
Vol 7 (1) ◽  
Author(s):  
Yair Caro ◽  
Raphael Yuster

For a graph $G$ whose degree sequence is $d_{1},\ldots ,d_{n}$, and for a positive integer $p$, let $e_{p}(G)=\sum_{i=1}^{n}d_{i}^{p}$. For a fixed graph $H$, let $t_{p}(n,H)$ denote the maximum value of $e_{p}(G)$ taken over all graphs with $n$ vertices that do not contain $H$ as a subgraph. Clearly, $t_{1}(n,H)$ is twice the Turán number of $H$. In this paper we consider the case $p>1$. For some graphs $H$ we obtain exact results, for some others we can obtain asymptotically tight upper and lower bounds, and many interesting cases remain open.


2013 ◽  
Vol 21 (3) ◽  
pp. 67-72 ◽  
Author(s):  
Mircea Cimpoeas
Keyword(s):  

Abstract We compute the Stanley depth for the quotient ring of a square free Veronese ideal and we give some bounds for the Stanley depth of a square free Veronese ideal. In particular, it follows that both satisfy the Stanley's conjecture.


2010 ◽  
Vol 106 (1) ◽  
pp. 88 ◽  
Author(s):  
Luis A. Dupont ◽  
Rafael H. Villarreal

The normality of a monomial ideal is expressed in terms of lattice points of blocking polyhedra and the integer decomposition property. For edge ideals of clutters this property characterizes normality. Let $G$ be the comparability graph of a finite poset. If $\mathrm{cl}(G)$ is the clutter of maximal cliques of $G$, we prove that $\mathrm{cl}(G)$ satisfies the max-flow min-cut property and that its edge ideal is normally torsion free. Then we prove that edge ideals of complete admissible uniform clutters are normally torsion free.


Author(s):  
George Giordano

Letd(k)be defined as the least positive integernfor whichpn+1<2pn−k. In this paper we will show that fork≥286664, thend(k)<k/(logk−2.531)and fork≥2, thenk(1−1/logk)/logk<d(k). Furthermore, forksufficiently large we establish upper and lower bounds ford(k).


2021 ◽  
pp. 2150041
Author(s):  
Hanxiao Qiao ◽  
Ke Wang ◽  
Suonan Renqian ◽  
Renqingcuo

For bipartite graphs [Formula: see text], the bipartite Ramsey number [Formula: see text] is the least positive integer [Formula: see text] so that any coloring of the edges of [Formula: see text] with [Formula: see text] colors will result in a copy of [Formula: see text] in the [Formula: see text]th color for some [Formula: see text]. In this paper, we get the exact value of [Formula: see text], and obtain the upper and lower bounds of [Formula: see text], where [Formula: see text] denotes a path with [Formula: see text] vertices.


Sign in / Sign up

Export Citation Format

Share Document