scholarly journals A new approach to the r-Whitney numbers by using combinatorial differential calculus

2019 ◽  
Vol 11 (2) ◽  
pp. 387-418
Author(s):  
Miguel A. Méndez ◽  
José L. Ramírez

Abstract In the present article we introduce two new combinatorial interpretations of the r-Whitney numbers of the second kind obtained from the combinatorics of the differential operators associated to the grammar G := {y → yxm, x → x}. By specializing m = 1 we obtain also a new combinatorial interpretation of the r-Stirling numbers of the second kind. Again, by specializing to the case r = 0 we introduce a new generalization of the Stirling number of the second kind and through them a binomial type family of polynomials that generalizes Touchard’s polynomials. Moreover, we recover several known identities involving the r-Dowling polynomials and the r-Whitney numbers using the combinatorial differential calculus. We construct a family of posets that generalize the classical Dowling lattices. The r-Withney numbers of the first kind are obtained as the sum of the Möbius function over elements of a given rank. Finally, we prove that the r-Dowling polynomials are a Sheffer family relative to the generalized Touchard binomial family, study their umbral inverses, and introduce [m]-Stirling numbers of the first kind. From the relation between umbral calculus and the Riordan matrices we give several new combinatorial identities

10.37236/342 ◽  
2010 ◽  
Vol 17 (1) ◽  
Author(s):  
Yoann Gelineau ◽  
Jiang Zeng

The Jacobi-Stirling numbers of the first and second kinds were introduced in the spectral theory and are polynomial refinements of the Legendre-Stirling numbers. Andrews and Littlejohn have recently given a combinatorial interpretation for the second kind of the latter numbers. Noticing that these numbers are very similar to the classical central factorial numbers, we give combinatorial interpretations for the Jacobi-Stirling numbers of both kinds, which provide a unified treatment of the combinatorial theories for the two previous sequences and also for the Stirling numbers of both kinds.


Filomat ◽  
2017 ◽  
Vol 31 (2) ◽  
pp. 309-320 ◽  
Author(s):  
B.S. El-Desouky ◽  
Nenad Cakic ◽  
F.A. Shiha

In this paper we give a new family of numbers, called ??-Whitney numbers, which gives generalization of many types of Whitney numbers and Stirling numbers. Some basic properties of these numbers such as recurrence relations, explicit formulas and generating functions are given. Finally many interesting special cases are derived.


Axioms ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 343
Author(s):  
Roberto Corcino ◽  
Mary Ann Ritzell Vega ◽  
Amerah Dibagulun

In this paper, type 2 (p,q)-analogues of the r-Whitney numbers of the second kind is defined and a combinatorial interpretation in the context of the A-tableaux is given. Moreover, some convolution-type identities, which are useful in deriving the Hankel transform of the type 2 (p,q)-analogue of the r-Whitney numbers of the second kind are obtained. Finally, the Hankel transform of the type 2 (p,q)-analogue of the r-Dowling numbers are established.


10.37236/763 ◽  
2008 ◽  
Vol 15 (1) ◽  
Author(s):  
Vít Jelínek ◽  
Toufik Mansour

A set partition of size $n$ is a collection of disjoint blocks $B_1,B_2,\ldots$, $B_d$ whose union is the set $[n]=\{1,2,\ldots,n\}$. We choose the ordering of the blocks so that they satisfy $\min B_1 < \min B_2 < \cdots < \min B_d$. We represent such a set partition by a canonical sequence $\pi_1,\pi_2,\ldots,\pi_n$, with $\pi_i=j$ if $i\in B_j$. We say that a partition $\pi$ contains a partition $\sigma$ if the canonical sequence of $\pi$ contains a subsequence that is order-isomorphic to the canonical sequence of $\sigma$. Two partitions $\sigma$ and $\sigma'$ are equivalent, if there is a size-preserving bijection between $\sigma$-avoiding and $\sigma'$-avoiding partitions. We determine all the equivalence classes of partitions of size at most $7$. This extends previous work of Sagan, who described the equivalence classes of partitions of size at most $3$. Our classification is largely based on several new infinite families of pairs of equivalent patterns. For instance, we prove that there is a bijection between $k$-noncrossing and $k$-nonnesting partitions, with a notion of crossing and nesting based on the canonical sequence. Our results also yield new combinatorial interpretations of the Catalan numbers and the Stirling numbers.


10.37236/6699 ◽  
2017 ◽  
Vol 24 (2) ◽  
Author(s):  
Sen-Peng Eu ◽  
Tung-Shan Fu ◽  
Yu-Chang Liang ◽  
Tsai-Lien Wong

This paper studies the generalizations of the Stirling numbers of both kinds and the Lah numbers in association with the normal ordering problem in the Weyl algebra $W=\langle x,D|Dx-xD=1\rangle$. Any word $\omega\in W$ with $m$ $x$'s and $n$ $D$'s can be expressed in the normally ordered form $\omega=x^{m-n}\sum_{k\ge 0} {{\omega}\brace {k}} x^{k}D^{k}$, where ${{\omega}\brace {k}}$ is known as the Stirling number of the second kind for the word $\omega$. This study considers the expansions of restricted words $\omega$ in $W$ over the sequences $\{(xD)^{k}\}_{k\ge 0}$ and $\{xD^{k}x^{k-1}\}_{k\ge 0}$. Interestingly, the coefficients in individual expansions turn out to be generalizations of the Stirling numbers of the first kind and the Lah numbers. The coefficients will be determined through enumerations of some combinatorial structures linked to the words $\omega$, involving decreasing forest decompositions of quasi-threshold graphs and non-attacking rook placements on Ferrers boards. Extended to $q$-analogues, weighted refinements of the combinatorial interpretations are also investigated for words in the $q$-deformed Weyl algebra.


2010 ◽  
Vol 23 (1) ◽  
pp. 115-120 ◽  
Author(s):  
B.S. El-Desouky ◽  
Nenad P. Cakić ◽  
Toufik Mansour

2013 ◽  
Vol 10 (04) ◽  
pp. 1350004 ◽  
Author(s):  
AUREL BEJANCU

This is the first paper in a series of three papers on a new approach for space-time-matter (STM) theory. The main purpose of this approach is to replace the Levi-Civita connection on the space-time from the classical Kaluza–Klein theory by what we call the Riemannian horizontal connection on the general Kaluza–Klein space. This is done by a development of a 4D tensor calculus whose geometrical objects live in a 5D space. The 4D tensor calculus and the Riemannian horizontal connection enable us to define in a 5D space some 4D differential operators: horizontal differential, horizontal gradient, horizontal divergence and horizontal Laplacian, which have a great role in the presentation of the STM theory in a covariant form. Finally, we introduce and study the horizontal electromagnetic tensor field, the horizontal Ricci tensor and the horizontal Einstein gravitational tensor field, which replace the well-known tensor fields from the classical Kaluza–Klein theory.


10.37236/564 ◽  
2011 ◽  
Vol 18 (1) ◽  
Author(s):  
Toufik Mansour ◽  
Matthias Schork ◽  
Mark Shattuck

A new family of generalized Stirling and Bell numbers is introduced by considering powers $(VU)^n$ of the noncommuting variables $U,V$ satisfying $UV=VU+hV^s$. The case $s=0$ (and $h=1$) corresponds to the conventional Stirling numbers of second kind and Bell numbers. For these generalized Stirling numbers, the recursion relation is given and explicit expressions are derived. Furthermore, they are shown to be connection coefficients and a combinatorial interpretation in terms of statistics is given. It is also shown that these Stirling numbers can be interpreted as $s$-rook numbers introduced by Goldman and Haglund. For the associated generalized Bell numbers, the recursion relation as well as a closed form for the exponential generating function is derived. Furthermore, an analogue of Dobinski's formula is given for these Bell numbers.


10.37236/7182 ◽  
2018 ◽  
Vol 25 (1) ◽  
Author(s):  
José L. Ramírez ◽  
Sergio N. Villamarin ◽  
Diego Villamizar

In this paper, we give a combinatorial interpretation of the $r$-Whitney-Eulerian numbers by means of coloured signed permutations. This sequence is a generalization of the well-known Eulerian numbers and it is connected to $r$-Whitney numbers of the second kind. Using generating functions, we provide some combinatorial identities and the log-concavity property. Finally, we show some basic congruences involving the $r$-Whitney-Eulerian numbers.


Sign in / Sign up

Export Citation Format

Share Document