scholarly journals Evolution of Physicochemical Structure of Waste Cotton Fiber (Hydrochar) During Hydrothermal Carbonation

2020 ◽  
Vol 20 (3) ◽  
pp. 319-326
Author(s):  
Shi Sheng ◽  
Zhang Meiling ◽  
Zhang Suying ◽  
Hou Wensheng ◽  
Yan Zhifeng

AbstractTo study the hydrothermal behavior of cotton fiber, the carbonization process and structural evolution of discarded or waste cotton fiber (WCF) under hydrothermal conditions were investigated using microcrystalline cellulose (MCC), and glucose was used as a model compound. Results showed that high temperature was beneficial for the hydrolysis of discarded cotton fiber, and the yield of sugar was 4.5%, which was lower than that of MCC (6.51%). WCF and MCC were carbonized at 240–~260°C and 220–~240°C, respectively, whereas the carbonization temperature of glucose was lower than 220°C. The C/O ratios of WCF and glucose hydrothermal products were 5.79 and 5.85, respectively. The three kinds of hydrothermal carbonization products had similar crystal structures and oxygen-containing functional groups. The carbonized products of WCF contained many irregular particles, while the main products of glucose carbonization were 0.5-mm-sized carbon microspheres (CMSs). Results showed that glucose was an important intermediate in WCF carbonization and that there were two main pathways of hydrothermal carbonization of cotton fibers: some cotton fibers were completely hydrolyzed into glucose accompanied by nucleation and then the growth of CMSs. For the other part, the glucose ring of the oligosaccharide, formed by the incomplete hydrolysis of cotton fibers under hydrothermal conditions of high temperature and pressure, breaks and then forms particulate matter.

Author(s):  
Sheng Shi ◽  
Meiling Zhang ◽  
Suying Zhang ◽  
Wensheng Hou ◽  
Zhifeng Yan

In order to study the hydrothermal behavior of cotton fiber, the carbonization process and structural evolution of discarded cotton fiber (WCF) under hydrothermal conditions were discussed use microcrystalline cellulose (MCC) and glucose as model compounds. The results showed that high temperature was beneficial to the hydrolysis of discarded cotton fiber, and the yield of the sugar was 4.5% which was lower than that of MCC 6.51%. WFC and MCC are carbonized in 240~260 ℃ and 220~240 ℃ respectively, while the carbonation temperature of glucose is lower than 220 ℃. The quality ratio of C/O in WCF and glucose hydrothermal products is 5.79 and 5.85 respectively; three kinds of hydrothermal carbonization products have similar crystal structure and oxygen-containing functional groups, and the WCF carbonization products contain a lot of irregular particles while the main products of glucose carbonization are 0.5 μm carbon microspheres (CMCC). The results show that glucose is an important intermediate product of WCF hydrolysis carbonation, and there are two main paths of cotton fiber hydrothermal carbonization: some cotton fibers are completely hydrolyzed into glucose and the nucleation is formed, and then the carbon microspheres are grown; for the other part, the glucose ring of the polysaccharide oligosaccharide formed by the incomplete hydrolysis of cotton fiber in the hydrothermal environment of high temperature and pressure breaks, then forms the particulate matters.


Elements ◽  
2020 ◽  
Vol 16 (1) ◽  
pp. 33-38 ◽  
Author(s):  
Elena F. Bazarkina ◽  
I-Ming Chou ◽  
Alexander F. Goncharov ◽  
Nikolay N. Akinfiev

The presence of H2 and H2O in planetary interiors prompts the need for fundamental studies on these compounds under corresponding conditions. Here, we summarize data on H2 properties in aqueous systems under conditions of high temperature and pressure. We explain how to measure important H2 fugacities in hydrothermal systems. We present available experimental data and thermodynamic models for H2 solubility and vapor–liquid partitioning under hydrothermal conditions. In addition, we introduce the fascinating world of H2–H2O clathrate hydrates under extreme temperatures and pressures. The properties of the H2–H2O system are well established below the critical point of water (374 °C and 22.06 MPa), but far less is known under higher temperatures and pressures, or the effect of salt.


2019 ◽  
Vol 126 (1) ◽  
pp. 015902 ◽  
Author(s):  
Q. Yu ◽  
Y. Su ◽  
X. D. Wang ◽  
K. Ståhl ◽  
K. Glazyrin ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1427
Author(s):  
Xiaoming Wu ◽  
Chichun Hu

Utilization of waste corn stalks (CS) has seized extensive attention due to high annual output and hazardous impact of piling aside or direct combustion on environment. However, previously there has been a lot of emphasis on improvement of its energy efficiency as solid fuel while limited investigations are available which explore the possibility of applying corn stalks as performance enhancer in asphalt binder. The purpose of this study is to examine the potential of employing hydrochar as modifiers in asphalt binder by a series of experimental tests. In this study, two hydrochar were produced from corn stalks by a novel process called hydrothermal carbonization at a different reaction temperature. The two hydrochar and their responding hydrochar-modified asphalt (HCMA) were tested by chemical and rheological tests. Chemical analysis detected the interaction between hydrochar and binder factions, resulting in poor compatibility but satisfying anti-aging property. Even though hydrochar increased the viscosity of bitumen, implying worse workability, and caused poor storage stability, ameliorated performance of asphalt binder at high temperature by incorporating hydrochar was verified by various criteria such as higher performance grade (PG) failure temperature and lower non-recoverable creep compliance (Jnr). Moreover, higher reaction temperature makes hydrochar’s particles smaller and more homogeneous, which results in slightly lower enhanced high temperature performance, more satisfying workability, better storage stability, and greater anti-aging effect of hydrochar-modified asphalt. Eventually, this study provided a promising win-win solution to environment problems concerning corn stalk treatment and shortage of asphalt binder. Further exploration of methods to improve HCMA’s storage stability, real-scale corroboration on trial section and life cycle assessment of asphalt pavement containing hydrochar modifiers will be followed in the future.


2018 ◽  
Vol 213 ◽  
pp. 207-214 ◽  
Author(s):  
Michael Hack ◽  
Wolfgang Korte ◽  
Stefan Sträßer ◽  
Matthias Teschner

Sign in / Sign up

Export Citation Format

Share Document