scholarly journals Numerical Investigation of Heat Transfer in Garment Air Gap

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Yijie Zhang ◽  
Juhong Jia

AbstractThis article aimed to study the characteristics and mechanisms of 3D heat transfer through clothing involving the air gap. A three-dimensional finite volume method is used to obtain the coupled conductive, convective, and radiative heat transfer in a body-air-cloth microclimate system. The flow contours and characteristics of temperature, heat flux, and velocity have been obtained. The reason for the high flux and temperature regions was analyzed. Computational results show that the coupled effect of the air gap and the airflow between the skin and garment strongly influences the temperature and heat flux distribution. There are several high-temperature regions on the clothing and high heat flux regions on the body skin because the conductive heat flux can cross through the narrow air gap and reach the cloth surface easily. The high-speed cooling airflow brings about high forced convective heat flux, which will result in the temperature increase on the upper cloth surface. The radiative heat flux has a strong correlation with the temperature gradient between the body and clothing. But its proportion in the total heat flux is relatively small.

Author(s):  
James D. Heidmann ◽  
David L. Rigby ◽  
Ali A. Ameri

A three-dimensional Navier-Stokes simulation has been performed for a realistic film-cooled turbine vane using the LeRC-HT code. The simulation includes the flow regions inside the coolant plena and film cooling holes in addition to the external flow. The vane is the subject of an upcoming NASA Lewis Research Center experiment and has both circular cross-section and shaped film cooling holes. This complex geometry is modeled using a multi-block grid which accurately discretizes the actual vane geometry including shaped holes. The simulation matches operating conditions for the planned experiment and assumes periodicity in the spanwise direction on the scale of one pitch of the film cooling hole pattern. Two computations were performed for different isothermal wall temperatures, allowing independent determination of heat transfer coefficients and film effectiveness values. The results indicate separate localized regions of high heat flux in the showerhead region due to low film effectiveness and high heat transfer coefficient values, while the shaped holes provide a reduction in heat flux through both parameters. Hole exit data indicate rather simple skewed profiles for the round holes, but complex profiles for the shaped holes with mass fluxes skewed strongly toward their leading edges.


2020 ◽  
Vol 142 (11) ◽  
Author(s):  
Deepak Kumar Kanungo ◽  
Sachin Kumar Shrivastava ◽  
Nand Kumar Singh ◽  
Kirti Chandra Sahu

Abstract We investigate heat transfer in supercritical steam flowing in a spiral tube by conducting three-dimensional numerical simulations. The current numerical solver has been validated with the existing experimental results, and simulations are performed by varying different geometric parameters of a spiral tube. The flow dynamics and heat transfer in a spiral tube are compared against those in a straight tube. For the parameters range considered in the present study, it is found that the heat transfer coefficient (HTC) in the spiral tube is 29% higher than that in the case of a straight tube for the same flow and thermal conditions. Our results indicate that the tangential velocity component resulting due to the spiraling effect of the steam is the primary reason for the enhancement of the HTC value. It is observed that while the HTC in a spiral tube is inversely related to the spiral diameter, it does not exhibit a strong relationship with the spiral pitch. Moreover, three existing heat transfer correlations are evaluated under the spiral flow condition and it is observed that none of them can calculate the HTC value accurately in spiral tubes. Using the Buckingham π-theorem, three modified correlations are proposed for the low, moderate, and high heat flux regimes, which accurately predict the wall temperature and HTC of supercritical steam in spiral tubes in all the heat flux regimes. The correlations have an error band of less than ±20%.


Author(s):  
Arvind Jaikumar ◽  
Satish G. Kandlikar

Thermal management in microelectronic devices involves development of high heat flux removal systems to meet the cooling requirements. Pool boiling addresses these demands by using latent heat transfer. In this study, heat transfer surfaces are fabricated by depositing porous coatings on an open microchannel surface. Screen printing and sintering are identified as techniques to deposit porous coatings and ensure substrate bonding respectively. Firstly, the effect of selective enhancement was studied by depositing porous coatings on (i) fin tops only (sintered-fin-tops), (ii) channels only (sintered-channels), and (iii) completely covering the boiling surface (sintered-throughout). The pool boiling performance with saturated distilled water at atmospheric pressure was obtained and a maximum critical heat flux (CHF) of 313 W/cm2 at a wall superheat of 7.5 °C was reported here for a sintered-throughout surface. Furthermore, the effect of channel width on sintered-throughout surfaces was studied. The results indicated that channel width plays an important in improving the performance. High speed videos are taken to understand the underlying mechanism. Additional nucleation sites and separate liquid-vapor pathways are identified as contributing mechanisms for the enhancement in CHF and heat transfer coefficient (HTC).


1999 ◽  
Vol 122 (2) ◽  
pp. 348-359 ◽  
Author(s):  
James D. Heidmann ◽  
David L. Rigby ◽  
Ali A. Ameri

A three-dimensional Navier–Stokes simulation has been performed for a realistic film-cooled turbine vane using the LeRC-HT code. The simulation includes the flow regions inside the coolant plena and film cooling holes in addition to the external flow. The vane is the subject of an upcoming NASA Lewis Research Center experiment and has both circular cross-sectional and shaped film cooling holes. This complex geometry is modeled using a multiblock grid, which accurately discretizes the actual vane geometry including shaped holes. The simulation matches operating conditions for the planned experiment and assumes periodicity in the spanwise direction on the scale of one pitch of the film cooling hole pattern. Two computations were performed for different isothermal wall temperatures, allowing independent determination of heat transfer coefficients and film effectiveness values. The results indicate separate localized regions of high heat flux in the showerhead region due to low film effectiveness and high heat transfer coefficient values, while the shaped holes provide a reduction in heat flux through both parameters. Hole exit data indicate rather simple skewed profiles for the round holes, but complex profiles for the shaped holes with mass fluxes skewed strongly toward their leading edges. [S0889-504X(00)02802-6]


1998 ◽  
Vol 35 (9) ◽  
pp. 671-678 ◽  
Author(s):  
Md. Shafiqul ISLAM ◽  
Ryutaro HINO ◽  
Katsuhiro HAGA ◽  
Masanori MONDE ◽  
Yukio SUDO

Author(s):  
Shinichi Miura ◽  
Yukihiro Inada ◽  
Yasuhisa Shinmoto ◽  
Haruhiko Ohta

Advance of an electronic technology has caused the increase of heat generation density for semiconductors densely integrated. Thermal management becomes more important, and a cooling system for high heat flux is required. It is extremely effective to such a demand using flow boiling heat transfer because of its high heat removal ability. To develop the cooling system for a large area at high heat flux, the cold plate structure of narrow channels with auxiliary unheated channel for additional liquid supply was devised and confirmed its validity by experiments. A large surface of 150mm in heated length and 30mm in width with grooves of an apex angle of 90 deg, 0.5mm depth and 1mm in pitch was employed. A structure of narrow rectangular heated channel between parallel plates with an unheated auxiliary channel was employed and the heat transfer characteristics were examined by using water for different combinations of gap sizes and volumetric flow rates. Five different liquid distribution modes were tested and their data were compared. The values of CHF larger than 1.9×106W/m2 for gap size of 2mm under mass velocity based on total volumetric flow rate and on the cross section area of main heated channel 720kg/m2s or 1.7×106W/m2 for gap size of 5mm under 290kg/m2s were obtained under total volumetric flow rate 4.5×10−5m3/s regardless of the liquid distribution modes. Under several conditions, the extensions of dry-patches were observed at the upstream location of the main heated channel resulting burnout not at the downstream but at the upstream. High values of CHF larger than 2×106W/m2 were obtained only for gap size of 2mm. The result indicates that higher mass velocity in the main heated channel is more effective for the increase in CHF. It was clarified that there is optimum flow rate distribution to obtain the highest values of CHF. For gap size of 2mm, high heat transfer coefficient as much as 7.4×104W/m2K were obtained at heat flux 1.5×106W/m2 under mass velocity 720kg/m2s based on total volumetric flow rate and on the cross section area of main heated channel. Also to obtain high heat transfer coefficient, it is more useful to supply the cooling liquid from the auxiliary unheated channel for additional liquid supply in the transverse direction perpendicular to the flow in the main heated channel.


Sign in / Sign up

Export Citation Format

Share Document