scholarly journals Effect of Different Yarn Combinations on Auxetic Properties of Plied Yarns

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Mine Akgun ◽  
Recep Eren ◽  
Fatih Suvari ◽  
Tugba Yurdakul

Abstract This study presents the effects of a novel plied yarn structure consisting of different yarn components and yarn twist levels on the Poisson's ratio and auxetic behavior of yarns. The plied yarn structures are formed with bulky and soft yarn components (helical plied yarn [HPY], braided yarn, and monofilament latex yarn) and stiff yarn components (such as high tenacity [HT] and polyvinyl chloride [PVC]-coated polyester yarns) to achieve auxetic behavior. Experimental results showed that as the level of yarn twist increased, the Poisson's ratios and the tensile modulus values of the plied yarns decreased, but the elongation values increased. A negative Poisson's ratio (NPR) was obtained in HT–latex and PVC–latex plied yarns with a low twist level. The plied yarns formed with braid–HPY and braid–braid components gave partial NPR under tension. A similar result was achieved for yarns with HT–latex and PVC–latex components. Since partial NPR was seen in novel plied yarns with braided and HPY components, it is concluded that yarns formed with bulky–bulky yarn components could give an auxetic performance under tension.

2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Aanchna Sharma ◽  
Yashwant Munde ◽  
Vinod Kushvaha

AbstractIn this study, Representative Volume Element based micromechanical modeling technique has been implemented to assess the mechanical properties of glass filled epoxy composites. Rod shaped glass fillers having an aspect ratio of 80 were used for preparing the epoxy composite. The three-dimensional unit cell model of representative volume element was prepared with finite element analysis tool ANSYS 19 using the periodic square and hexagonal array with an assumption that there is a perfect bonding between the filler and the epoxy matrix. Results revealed that the tensile modulus increases and Poisson’s ratio decreases with increase in the volume fraction of the filler. To study the effect of filler volume fraction, the pulse echo techniques were used to experimentally measure the tensile modulus and Poisson’s ratio for 5% to 15% volume fraction of the filler. A good agreement was found between the RVE based predicted values and the experimental results.


2021 ◽  
pp. 109963622110204
Author(s):  
Fenglian Li ◽  
Wenhao Yuan ◽  
Chuanzeng Zhang

Based on the hyperbolic tangent shear deformation theory, free vibration and sound insulation of two different types of functionally graded (FG) honeycomb sandwich plates with negative Poisson’s ratio are studied in this paper. Using Hamilton’s principle, the vibration and vibro-acoustic coupling dynamic equations for FG honeycomb sandwich plates with simply supported edges are established. By applying the Navier’s method and fluid–solid interface conditions, the derived governing dynamic equations are solved. The natural frequencies and the sound insulation of FG honeycomb sandwich plates obtained in this work are compared with the numerical results by the finite element simulation. It is proven that the theoretical models for the free vibration and the sound insulation are accurate and efficient. Moreover, FG sandwich plates with different honeycomb cores are investigated and compared. The corresponding results show that the FG honeycomb core with negative Poisson’s ratio can yield much lower frequencies. Then, the influences of various geometrical and material parameters on the vibration and sound insulation performance are systematically analyzed.


Sign in / Sign up

Export Citation Format

Share Document