scholarly journals Prediction of e-Learning Efficiency by Neural Networks

2012 ◽  
Vol 12 (2) ◽  
pp. 98-108 ◽  
Author(s):  
Petar Halachev

Abstract A model for prediction of the outcome indicators of e-Learning, based on Balanced ScoreCard (BSC) by Neural Networks (NN) is proposed. In the development of NN models the problem of a small sample size of the data arises. In order to reduce the number of variables and increase the examples of the training sample, preprocessing of the data with the help of the methods Interpolation and Principal Component Analysis (PCA) is performed. A method for optimizing the structure of the neural network is applied over linear and nonlinear neural network architectures. The highest accuracy of prognosis is obtained applying the method of Optimal Brain Damage (OBD) over the nonlinear neural network. The efficiency and applicability of the method suggested is proved by numerical experiments on the basis of real data.

Author(s):  
Tshilidzi Marwala

The problem of missing data in databases has recently been dealt with through the use computational intelligence. The hybrid of auto-associative neural networks and genetic algorithms has proven to be a successful approach to missing data imputation. Similarly, two auto-associative neural networks are developed to be used in conjunction with genetic algorithm to estimate missing data, and these approaches are compared to a Bayesian auto-associative neural network and genetic algorithm approach. One technique combines three neural networks to form a hybrid auto-associative network, while the other merges principal component analysis and neural networks. The hybrid of the neural network and genetic algorithm approach proves to be the most accurate when estimating one missing value, while a hybrid of principal component and neural networks is more consistent and captures patterns in the data more efficiently.


Author(s):  
Khaled . M. G Noama ◽  
Ahmed Khalid ◽  
Arafat A. Muharram ◽  
Ibrahim A. Ahmed

E-Learning nowadays is one of the learning system which uses the latest technologies in the field of innovative learning, it has been an extension of traditional education. The effectiveness of E-Learning lies in achievement of education and improving the student's performance and its reflection on the demands of students by discovering the weaknesses and strengths of the factors affecting distance learning. In this research we have used the multilayered neural networks (feedforward neural network) with an input of five neurons which represent the five criteria (virtual class presence, Discussion during semester, Solving Quiz, Mid-term examination, Assignment), hidden layer has two neurons and the output layers have one neuron. to estimate the performance of the students attending an E-Learning course, feedforward neural network was  applied to real data )400 student records (80%) are used for training data and the remaining 100 records (20%) are used as test data, performance = 0.0699), to  predict the performance of  the students   that reflect their real grades.


Author(s):  
Ali Diryag ◽  
Marko Mitić ◽  
Zoran Miljković

It is known that the supervision and learning of robotic executions is not a trivial problem. Nowadays, robots must be able to tolerate and predict internal failures in order to successfully continue performing their tasks. This study presents a novel approach for prediction of robot execution failures based on neural networks. Real data consisting of robot forces and torques recorded immediately after the system failure are used for the neural network training. The multilayer feedforward neural networks are employed in order to find optimal solution for the failure prediction problem. In total, 7 learning algorithms and 24 neural architectures are implemented in two environments – Matlab and specially designed software titled BPnet. The results show that the neural networks can successfully be applied for the problem in hand with prediction rate of 95.4545%, despite having the erroneous or otherwise incomplete sensor measurements invoked in the dataset. Additionally, the real-world experiments are conducted on a mobile robot for obstacle detection and trajectory tracking problems in order to prove the robustness of the proposed prediction approach. In over 96% for the detection problem and 99% for the tracking experiments, neural network successfully predicted the failed information, which evidences the usefulness and the applicability of the developed intelligent method.


Author(s):  
Evgenii Tsymbalov ◽  
Sergei Makarychev ◽  
Alexander Shapeev ◽  
Maxim Panov

Active learning methods for neural networks are usually based on greedy criteria, which ultimately give a single new design point for the evaluation. Such an approach requires either some heuristics to sample a batch of design points at one active learning iteration, or retraining the neural network after adding each data point, which is computationally inefficient. Moreover, uncertainty estimates for neural networks sometimes are overconfident for the points lying far from the training sample. In this work, we propose to approximate Bayesian neural networks (BNN) by Gaussian processes (GP), which allows us to update the uncertainty estimates of predictions efficiently without retraining the neural network while avoiding overconfident uncertainty prediction for out-of-sample points. In a series of experiments on real-world data, including large-scale problems of chemical and physical modeling, we show the superiority of the proposed approach over the state-of-the-art methods.


2020 ◽  
Vol 2020 (10) ◽  
pp. 54-62
Author(s):  
Oleksii VASYLIEV ◽  

The problem of applying neural networks to calculate ratings used in banking in the decision-making process on granting or not granting loans to borrowers is considered. The task is to determine the rating function of the borrower based on a set of statistical data on the effectiveness of loans provided by the bank. When constructing a regression model to calculate the rating function, it is necessary to know its general form. If so, the task is to calculate the parameters that are included in the expression for the rating function. In contrast to this approach, in the case of using neural networks, there is no need to specify the general form for the rating function. Instead, certain neural network architecture is chosen and parameters are calculated for it on the basis of statistical data. Importantly, the same neural network architecture can be used to process different sets of statistical data. The disadvantages of using neural networks include the need to calculate a large number of parameters. There is also no universal algorithm that would determine the optimal neural network architecture. As an example of the use of neural networks to determine the borrower's rating, a model system is considered, in which the borrower's rating is determined by a known non-analytical rating function. A neural network with two inner layers, which contain, respectively, three and two neurons and have a sigmoid activation function, is used for modeling. It is shown that the use of the neural network allows restoring the borrower's rating function with quite acceptable accuracy.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Idris Kharroubi ◽  
Thomas Lim ◽  
Xavier Warin

AbstractWe study the approximation of backward stochastic differential equations (BSDEs for short) with a constraint on the gains process. We first discretize the constraint by applying a so-called facelift operator at times of a grid. We show that this discretely constrained BSDE converges to the continuously constrained one as the mesh grid converges to zero. We then focus on the approximation of the discretely constrained BSDE. For that we adopt a machine learning approach. We show that the facelift can be approximated by an optimization problem over a class of neural networks under constraints on the neural network and its derivative. We then derive an algorithm converging to the discretely constrained BSDE as the number of neurons goes to infinity. We end by numerical experiments.


Author(s):  
Saša Vasiljević ◽  
Jasna Glišović ◽  
Nadica Stojanović ◽  
Ivan Grujić

According to the World Health Organization, air pollution with PM10 and PM2.5 (PM-particulate matter) is a significant problem that can have serious consequences for human health. Vehicles, as one of the main sources of PM10 and PM2.5 emissions, pollute the air and the environment both by creating particles by burning fuel in the engine, and by wearing of various elements in some vehicle systems. In this paper, the authors conducted the prediction of the formation of PM10 and PM2.5 particles generated by the wear of the braking system using a neural network (Artificial Neural Networks (ANN)). In this case, the neural network model was created based on the generated particles that were measured experimentally, while the validity of the created neural network was checked by means of a comparative analysis of the experimentally measured amount of particles and the prediction results. The experimental results were obtained by testing on an inertial braking dynamometer, where braking was performed in several modes, that is under different braking parameters (simulated vehicle speed, brake system pressure, temperature, braking time, braking torque). During braking, the concentration of PM10 and PM2.5 particles was measured simultaneously. The total of 196 measurements were performed and these data were used for training, validation, and verification of the neural network. When it comes to simulation, a comparison of two types of neural networks was performed with one output and with two outputs. For each type, network training was conducted using three different algorithms of backpropagation methods. For each neural network, a comparison of the obtained experimental and simulation results was performed. More accurate prediction results were obtained by the single-output neural network for both particulate sizes, while the smallest error was found in the case of a trained neural network using the Levenberg-Marquardt backward propagation algorithm. The aim of creating such a prediction model is to prove that by using neural networks it is possible to predict the emission of particles generated by brake wear, which can be further used for modern traffic systems such as traffic control. In addition, this wear algorithm could be applied on other vehicle systems, such as a clutch or tires.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Jack Y. Araz ◽  
Michael Spannowsky

Abstract Ensemble learning is a technique where multiple component learners are combined through a protocol. We propose an Ensemble Neural Network (ENN) that uses the combined latent-feature space of multiple neural network classifiers to improve the representation of the network hypothesis. We apply this approach to construct an ENN from Convolutional and Recurrent Neural Networks to discriminate top-quark jets from QCD jets. Such ENN provides the flexibility to improve the classification beyond simple prediction combining methods by linking different sources of error correlations, hence improving the representation between data and hypothesis. In combination with Bayesian techniques, we show that it can reduce epistemic uncertainties and the entropy of the hypothesis by simultaneously exploiting various kinematic correlations of the system, which also makes the network less susceptible to a limitation in training sample size.


Electronics ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1526 ◽  
Author(s):  
Choongmin Kim ◽  
Jacob A. Abraham ◽  
Woochul Kang ◽  
Jaeyong Chung

Crossbar-based neuromorphic computing to accelerate neural networks is a popular alternative to conventional von Neumann computing systems. It is also referred as processing-in-memory and in-situ analog computing. The crossbars have a fixed number of synapses per neuron and it is necessary to decompose neurons to map networks onto the crossbars. This paper proposes the k-spare decomposition algorithm that can trade off the predictive performance against the neuron usage during the mapping. The proposed algorithm performs a two-level hierarchical decomposition. In the first global decomposition, it decomposes the neural network such that each crossbar has k spare neurons. These neurons are used to improve the accuracy of the partially mapped network in the subsequent local decomposition. Our experimental results using modern convolutional neural networks show that the proposed method can improve the accuracy substantially within about 10% extra neurons.


Sign in / Sign up

Export Citation Format

Share Document