scholarly journals Symmetric identity for polynomial sequences satisfying A′ n +1(x) = (n + 1)An (x)

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Farid Bencherif ◽  
Rachid Boumahdi ◽  
Tarek Garici

Abstract Using umbral calculus, we establish a symmetric identity for any sequence of polynomials satisfying A′ n +1(x) = (n + 1)An (x) with A 0(x) a constant polynomial. This identity allows us to obtain in a simple way some known relations involving Apostol-Bernoulli polynomials, Apostol-Euler polynomials and generalized Bernoulli polynomials attached to a primitive Dirichlet character.

Author(s):  
Karl Dilcher ◽  
Lin Jiu

We evaluate the Hankel determinants of various sequences related to Bernoulli and Euler numbers and special values of the corresponding polynomials. Some of these results arise as special cases of Hankel determinants of certain sums and differences of Bernoulli and Euler polynomials, while others are consequences of a method that uses the derivatives of Bernoulli and Euler polynomials. We also obtain Hankel determinants for sequences of sums and differences of powers and for generalized Bernoulli polynomials belonging to certain Dirichlet characters with small conductors. Finally, we collect and organize Hankel determinant identities for numerous sequences, both new and known, containing Bernoulli and Euler numbers and polynomials.


2021 ◽  
Vol 19 (1) ◽  
pp. 878-887
Author(s):  
Taekyun Kim ◽  
Dae San Kim ◽  
Dmitry V. Dolgy ◽  
Jin-Woo Park

Abstract Type 2 poly-Bernoulli polynomials were introduced recently with the help of modified polyexponential functions. In this paper, we investigate several properties and identities associated with those polynomials arising from umbral calculus techniques. In particular, we express the type 2 poly-Bernoulli polynomials in terms of several special polynomials, like higher-order Cauchy polynomials, higher-order Euler polynomials, and higher-order Frobenius-Euler polynomials.


Filomat ◽  
2020 ◽  
Vol 34 (2) ◽  
pp. 663-669
Author(s):  
Paçin Dere

The recurrence relations have a very important place for the special polynomials such as q-Appell polynomials. In this paper, we give some recurrence formulas that allow us a better understanding of q-Appell polynomials. We investigate the q-Bernoulli polynomials and q-Euler polynomials, which are q-Appell polynomials, and we obtain their recurrence formulas by using the methods of the q-umbral calculus and the quantum calculus. Our methods include some operators which are quite handy for obtaining relations for the q-Appell polynomials. Especially, some applications of q-derivative operator are used in this work.


Author(s):  
Taekyun Kim ◽  
Dae San Kim ◽  
Han-Young Kim ◽  
Hyunseok Lee ◽  
Lee-Chae Jang

Abstract Carlitz initiated a study of degenerate Bernoulli and Euler numbers and polynomials which is the pioneering work on degenerate versions of special numbers and polynomials. In recent years, studying degenerate versions regained lively interest of some mathematicians. The purpose of this paper is to study degenerate Bell polynomials by using umbral calculus and generating functions. We derive several properties of the degenerate Bell polynomials including recurrence relations, Dobinski-type formula, and derivatives. In addition, we represent various known families of polynomials such as Euler polynomials, modified degenerate poly-Bernoulli polynomials, degenerate Bernoulli polynomials of the second kind, and falling factorials in terms of degenerate Bell polynomials and vice versa.


2009 ◽  
Vol 2009 ◽  
pp. 1-8 ◽  
Author(s):  
Taekyun Kim ◽  
Seog-Hoon Rim ◽  
Byungje Lee

By the properties ofp-adic invariant integral onℤp, we establish various identities concerning the generalized Bernoulli numbers and polynomials. From the symmetric properties ofp-adic invariant integral onℤp, we give some interesting relationship between the power sums and the generalized Bernoulli polynomials.


2016 ◽  
Vol 103 (2) ◽  
pp. 231-249
Author(s):  
JUN FURUYA ◽  
MAKOTO MINAMIDE ◽  
YOSHIO TANIGAWA

We attempt to discuss a new circle problem. Let $\unicode[STIX]{x1D701}(s)$ denote the Riemann zeta-function $\sum _{n=1}^{\infty }n^{-s}$ ($\text{Re}\,s>1$) and $L(s,\unicode[STIX]{x1D712}_{4})$ the Dirichlet $L$-function $\sum _{n=1}^{\infty }\unicode[STIX]{x1D712}_{4}(n)n^{-s}$ ($\text{Re}\,s>1$) with the primitive Dirichlet character mod 4. We shall define an arithmetical function $R_{(1,1)}(n)$ by the coefficient of the Dirichlet series $\unicode[STIX]{x1D701}^{\prime }(s)L^{\prime }(s,\unicode[STIX]{x1D712}_{4})=\sum _{n=1}^{\infty }R_{(1,1)}(n)n^{-s}$$(\text{Re}\,s>1)$. This is an analogue of $r(n)/4=\sum _{d|n}\unicode[STIX]{x1D712}_{4}(d)$. In the circle problem, there are many researches of estimations and related topics on the error term in the asymptotic formula for $\sum _{n\leq x}r(n)$. As a new problem, we deduce a ‘truncated Voronoï formula’ for the error term in the asymptotic formula for $\sum _{n\leq x}R_{(1,1)}(n)$. As a direct application, we show the mean square for the error term in our new problem.


Symmetry ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 675 ◽  
Author(s):  
Serkan Araci ◽  
Waseem Khan ◽  
Kottakkaran Nisar

We aim to introduce arbitrary complex order Hermite-Bernoulli polynomials and Hermite-Bernoulli numbers attached to a Dirichlet character χ and investigate certain symmetric identities involving the polynomials, by mainly using the theory of p-adic integral on Z p . The results presented here, being very general, are shown to reduce to yield symmetric identities for many relatively simple polynomials and numbers and some corresponding known symmetric identities.


Author(s):  
Mehmet Acikgoz ◽  
Resul Ates ◽  
Ugur Duran ◽  
Serkan Araci

This article aims to identify the generating function of modi…ed Apostol type q-Bernoulli polynomials. With the aid of this generating function, some properties of modi…ed Apostol type q-Bernoulli polynomials are given. It is shown that aforementioned polynomials are q-Appell. Hence, we make use of these polynomials to have applications on q-Umbral calculus. From those applications, we derive some theorems in order to get Apostol type modi…ed q-Bernoulli polynomials as a linear combination of some known polynomials which we stated in the paper.


Sign in / Sign up

Export Citation Format

Share Document