scholarly journals On Some Consequences of the Functional Generalization of the Parallelogram Identity

2014 ◽  
Vol 47 (2) ◽  
Author(s):  
Maciej J. Maczyński

AbstractThe aim of this paper is to unify the partial results, which up to now, have been dispersed in various publications in order to show the importance of the functional form of parallelogram identity in mathematics and physics. We study vector spaces admitting a real non-negative functional which satisfies an identity analogous to the parallelogram identity in normed vector spaces. We show that this generalized parallelogram identity also implies an equality analogous to the Cauchy-Schwarz inequality. We study the consequences of this identity in real and complex vector spaces, in generalized Riesz spaces and in abelian groups. We give a physical interpretation to these results. For vector spaces of observables and states, we show that the parallelogram identity implies an inequality analogous to Heisenberg’s uncertainty principle (HUP), and we show that we can obtain the standard structure of quantum mechanics from the parallelogram identity, without assuming from the beginning the HUP. The role of complex numbers in quantum mechanics is discussed.

Author(s):  
Phillip Kaye ◽  
Raymond Laflamme ◽  
Michele Mosca

We assume the reader has a strong background in elementary linear algebra. In this section we familiarize the reader with the algebraic notation used in quantum mechanics, remind the reader of some basic facts about complex vector spaces, and introduce some notions that might not have been covered in an elementary linear algebra course. The linear algebra notation used in quantum computing will likely be familiar to the student of physics, but may be alien to a student of mathematics or computer science. It is the Dirac notation, which was invented by Paul Dirac and which is used often in quantum mechanics. In mathematics and physics textbooks, vectors are often distinguished from scalars by writing an arrow over the identifying symbol: e.g a⃗. Sometimes boldface is used for this purpose: e.g. a. In the Dirac notation, the symbol identifying a vector is written inside a ‘ket’, and looks like |a⟩. We denote the dual vector for a (defined later) with a ‘bra’, written as ⟨a|. Then inner products will be written as ‘bra-kets’ (e.g. ⟨a|b⟩). We now carefully review the definitions of the main algebraic objects of interest, using the Dirac notation. The vector spaces we consider will be over the complex numbers, and are finite-dimensional, which significantly simplifies the mathematics we need. Such vector spaces are members of a class of vector spaces called Hilbert spaces. Nothing substantial is gained at this point by defining rigorously what a Hilbert space is, but virtually all the quantum computing literature refers to a finite-dimensional complex vector space by the name ‘Hilbert space’, and so we will follow this convention. We will use H to denote such a space. Since H is finite-dimensional, we can choose a basis and alternatively represent vectors (kets) in this basis as finite column vectors, and represent operators with finite matrices. As you see in Section 3, the Hilbert spaces of interest for quantum computing will typically have dimension 2n, for some positive integer n. This is because, as with classical information, we will construct larger state spaces by concatenating a string of smaller systems, usually of size two.


Author(s):  
Steven E. Vigdor

Chapter 7 describes the fundamental role of randomness in quantum mechanics, in generating the first biomolecules, and in biological evolution. Experiments testing the Einstein–Podolsky–Rosen paradox have demonstrated, via Bell’s inequalities, that no local hidden variable theory can provide a viable alternative to quantum mechanics, with its fundamental randomness built in. Randomness presumably plays an equally important role in the chemical assembly of a wide array of polymer molecules to be sampled for their ability to store genetic information and self-replicate, fueling the sort of abiogenesis assumed in the RNA world hypothesis of life’s beginnings. Evidence for random mutations in biological evolution, microevolution of both bacteria and antibodies and macroevolution of the species, is briefly reviewed. The importance of natural selection in guiding the adaptation of species to changing environments is emphasized. A speculative role of cosmological natural selection for black-hole fecundity in the evolution of universes is discussed.


Author(s):  
Frank S. Levin

The subject of Chapter 8 is the fundamental principles of quantum theory, the abstract extension of quantum mechanics. Two of the entities explored are kets and operators, with kets being representations of quantum states as well as a source of wave functions. The quantum box and quantum spin kets are specified, as are the quantum numbers that identify them. Operators are introduced and defined in part as the symbolic representations of observable quantities such as position, momentum and quantum spin. Eigenvalues and eigenkets are defined and discussed, with the former identified as the possible outcomes of a measurement. Bras, the counterpart to kets, are introduced as the means of forming probability amplitudes from kets. Products of operators are examined, as is their role underpinning Heisenberg’s Uncertainty Principle. A variety of symbol manipulations are presented. How measurements are believed to collapse linear superpositions to one term of the sum is explored.


2021 ◽  
Vol 64 (3) ◽  
pp. 15-17
Author(s):  
Don Monroe

A theorem about computations that exploit quantum mechanics challenges longstanding ideas in mathematics and physics.


1968 ◽  
Vol 75 (8) ◽  
pp. 925
Author(s):  
Homer Bechtell ◽  
Frank S. Cater
Keyword(s):  

1949 ◽  
Vol 1 (2) ◽  
pp. 153-165 ◽  
Author(s):  
Marston Morse ◽  
William Transue

In a series of papers which will follow this paper the authors will present a theory of functionals which are bilinear over a product A × B of two normed vector spaces A and B. This theory will include a representation theory, a variational theory, and a spectral theory. The associated characteristic equations will include as special cases the Jacobi equations of the classical variational theory when n = 1, and self-adjoint integrodifferential equations of very general type. The bilinear theory is oriented by the needs of non-linear and non-bilinear analysis in the large.


2015 ◽  
Vol 45 (5) ◽  
pp. 641-702 ◽  
Author(s):  
Jeremiah James ◽  
Christian Joas

As part of an attempt to establish a new understanding of the earliest applications of quantum mechanics and their importance to the overall development of quantum theory, this paper reexamines the role of research on molecular structure in the transition from the so-called old quantum theory to quantum mechanics and in the two years immediately following this shift (1926–1928). We argue on two bases against the common tendency to marginalize the contribution of these researches. First, because these applications addressed issues of longstanding interest to physicists, which they hoped, if not expected, a complete quantum theory to address, and for which they had already developed methods under the old quantum theory that would remain valid under the new mechanics. Second, because generating these applications was one of, if not the, principal means by which physicists clarified the unity, generality, and physical meaning of quantum mechanics, thereby reworking the theory into its now commonly recognized form, as well as developing an understanding of the kinds of predictions it generated and the ways in which these differed from those of the earlier classical mechanics. More broadly, we hope with this article to provide a new viewpoint on the importance of problem solving to scientific research and theory construction, one that might complement recent work on its role in science pedagogy.


Sign in / Sign up

Export Citation Format

Share Document