scholarly journals The effect of planting, seeding and soil preparation on the regeneration success of Scots pine (Pinus sylvestris L.) on drained peatlands – 10-year results

2020 ◽  
Vol 72 (1) ◽  
pp. 91-106
Author(s):  
Jyrki Hytönen ◽  
Hannu Hökkä ◽  
Markku Saarinen

AbstractWe studied the effect of regeneration (planting/seeding) and soil preparation methods (no soil preparation/scalping/mounding) on the regeneration success of Scots pine (Pinus sylvestris L.) on three drained peatland Scots pine stands in northern Finland. After ten years, planting and sowing showed no differences in the total number of Scots pine seedlings (one seedling per sowing spot accepted) with the exception of the Sievi experiment. Without soil preparation the total number of Scots pine seedlings was 350–600 per ha. Scalping increased the number of Scots pine seedlings to 550–900 per ha, with the exception of seeding at Sievi. In mounded plots, with the exception of seeded plots at the Sievi site, the number of planted or seeded seedlings was 1,325–2,350 per ha. The number of crop seedlings in all the experiments and for all the soil preparation treatments reached the target of 2,000 seedlings per ha if naturally regenerated Scots pine, Norway spruce (Picea abies (L.) H. Karst.) or birch (Betula spp.) seedlings were accepted as such. Moose (Alces alces L.) damage in Scots pine crop seedlings ranged from 4% in Sievi to 65% in Simo. The proportion of planted or seeded Scots pines of the crop seedlings was 23% in unprepared plots, 30% in scalped plots and 75% in mounded plots. Mounding increased the share of Scots pine seedlings in the overall crop seedlings. Planted seedlings were taller than seeded seedlings. Planting in mounds gave the best overall results in terms of the number of crop seedlings and their height ten years after the treatment.

Author(s):  
Astra Zaļuma ◽  
Arnis Gailis ◽  
Natālija Burņeviča ◽  
Kari Korhonen ◽  
Tālis Gaitnieks

Abstract Five-year-old Norway spruce and four-year-old Scots pine seedlings of various origin were inoculated with Heterobasidion annosum s.s. and H. parviporum to estimate whether the susceptibility of seedlings to Heterobasidion was affected by origin of seeds. In total, 520 spruce and 538 pine seedlings from different seed sources and provenance regions of Latvia were tested. Four months after inoculation the fungal growth was measured. The results highlight differences between development of H. annosum and H. parviporum in spruce and pine seedlings. We did not find any seed source that was more resistant than others.


1989 ◽  
Vol 46 (Supplement) ◽  
pp. 553s-556s ◽  
Author(s):  
S. Huttunen ◽  
M. Turunen ◽  
J. Reinikainen

2019 ◽  
Vol 92 (5) ◽  
pp. 648-658 ◽  
Author(s):  
J Routa ◽  
A Kilpeläinen ◽  
V -P Ikonen ◽  
A Asikainen ◽  
A Venäläinen ◽  
...  

Abstract The aim of this study was to examine how intensified silviculture affects timber production (sawlogs and pulpwood) and its economic profitability (net present value [NPV], with 2 per cent interest rate) based on forest ecosystem model simulations. The study was conducted on Norway spruce and Scots pine stands located on medium-fertile upland forest sites under middle boreal conditions in Finland, under current climate and minor climate change (the RCP2.6 forcing scenario). In intensified silviculture, improved regeneration materials were used, with 10–20 per cent higher growth than the unimproved materials, and/or nitrogen (N) fertilization of 150 kg ha−1, once or twice during a rotation of 50–70 years. Compared to the baseline management regime, the use of improved seedlings, alone or together with N fertilization, increased timber production by up to 26–28 per cent and the NPV by up to 32–60 per cent over rotation lengths of 60–70 years, regardless of tree species (although more in spruce) or climate applied. The use of improved seedlings affected timber yield and NPV more than N fertilization. Minor climate change also increased these outcomes in Scots pine, but not in Norway spruce.


2019 ◽  
Vol 19 (5) ◽  
pp. 1429-1440 ◽  
Author(s):  
Matts Lindbladh ◽  
Lisa Petersson ◽  
Per-Ola Hedwall ◽  
Renats Trubins ◽  
Emma Holmström ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document