scholarly journals Geometric Potential of Pléiades 1A Satellite Imagery

2014 ◽  
Vol 60 (3) ◽  
pp. 19-27 ◽  
Author(s):  
Andrii Postelniak

Abstract In this paper, the geometrical characteristics of Pléiades 1A satellite imagery (both single and stereo) are analysed. At first the process of digital surface model (DSM) extraction from a Pléiades 1A stereo pair is described and analysed. After that geometric an accuracy of imagery, orthorectified using the extracted DSM and using the SRTM (Shuttle radar topographic mission) was analysed. The Pléiades 1A stereo pair was acquired on October 22, 2012 from the same orbital pass over an urban zone (Kiev, Ukraine). The study area is heterogeneous: there are both built-up and flat areas. The iImage orientation, DSM extraction and orthorectified images generation were performed using the PCI Geomatica 2013 software. The results showed that a strong, positive correlation between reference-derived elevations and DSM-derived elevations can be observed, and the orthorectified image accuracy, generated using that DSM, approximately equal to 1 m can be achieved using a bias compensation sensor model. Different sensor models were used for orthorectification using the SRTM. In this case, the geometric accuracy is а function of a chosen sensor model and a number of ground control points (GCP).

Author(s):  
Andri Suprayogi ◽  
Nurhadi Bashit

Large scale base map can be obtained by various methods, one of them is orthorectification process of remote sensing satellite imagery to eliminate the relief displacement caused by height variation of earth surface. To obtain a  map images with good quality,  it requires additional data such as sensor model in the form of rational polynomial coefficients (RPC), surface model data, and ground control points Satellite imageries with high resolution  file size are relatively large.  In order to process them,  high specification of hardwares were required. To overcome this by cutting only a portion of the images, based on certain study areas were suffer from of georeference lost so it would not be able to orthorectified. On the other hand,  in several remote sensing software such as ESA SNAP and Orfeo Toolbox (OTB)  subset or pixel extraction from satellite imagery,  preserve the imagery geometric sensor models. This research aimed at geometric accuracy of orthorectification carried out in a single scene of Pleiades Imagery within the Kepahiang Subdistrict, located at Kepahiang Regency, Bengkulu Province, by using DEMNAS and the imagery refined sensor mode, and ground control points taken using GPS Survey. Related with the raw imagery condition which consists of Panchromatic and multispectral bands, this study were separated to assembly, pan sharpening , and sensor model refinement stages prior to orthorectification carried out both in the original or full extent imagery and the result of subset extent imagery. After  these processses taken place, we measure the accuracy of each full and subset imagery.These procedures were carried out using Orfeo toolbox 6.6.0 in the Linux Mint 19 Operating system. From the process log, running time in total  were 7814.518  second for the full extent and 4321.95 seconds for the subset processess. And as a big data process, the total of full extent imageries was 83.15 GB  while the subset size  was  only 30.73 GB.  The relative accuracy of the full extent and its subset imagery were 0.431 meters. Accuracy of the  sensor model refinement process are  1.217 meters and 1.550 meters with GCP added, while the accuracu of  the orthorectifications results were  0.416 meters and 0.751 meters by using ICP.  Variation of execution time may caused by the data input size and complexity of the mathematical process carried out in each stages. Meanwhile,  the variation of accuracy may  caused by the check or control points placements above satellite Imagery which suffer from uncertainty when dealing with  the sub-pixel position or under 0.5 meters.


2021 ◽  
Vol 13 (23) ◽  
pp. 4791
Author(s):  
Xiaoyong Zhu ◽  
Xinming Tang ◽  
Guo Zhang ◽  
Bin Liu ◽  
Wenmin Hu

Digital Surface Model (DSM) derived from high resolution satellite imagery is important for various applications. GFDM is China’s first civil optical remote sensing satellite with multiple agile imaging modes and sub-meter resolution. Its panchromatic resolution is 0.5 m and 1.68 m for multi-spectral images. Compared with the onboard stereo viewing instruments (0.8 m for forward image, 0.65 m for back image, and 2.6 m for back multi-spectrum images) of GF-7, a mapping satellite of China in the same period, their accuracy is very similar. However, the accuracy of GFDM DSM has not yet been verified or fully characterized, and the detailed difference between the two has not yet been assessed either. This paper evaluates the DSM accuracy generated by GFDM and GF-7 satellite imagery using high-precision reference DSM and the observations of Ground Control Points (GCPs) as the reference data. A method to evaluate the DSM accuracy based on regional DSM errors and GCPs errors is proposed. Through the analysis of DSM subtraction, profile lines, strips detection and residuals coupling differences, the differences of DSM overall accuracy, vertical accuracy, horizontal accuracy and the strips errors between GFDM DSM and GF-7 DSM are evaluated. The results show that the overall accuracy of both is close while the vertical accuracy is slightly different. When regional DSM is used as the benchmark, the GFDM DSM has a slight advantage in elevation accuracy, but there are some regular fluctuation strips with small amplitude. When GCPs are used as the reference, the elevation Root Mean Square Error (RMSE) of GFDM DSM is about 0.94 m, and that of GF-7 is 0.67 m. GF-7 DSM is more accurate, but both of the errors are within 1 m. The DSM image residuals of the GF-7 are within 0.5 pixel, while the residuals of GFDM are relatively large, reaching 0.8 pixel.


2021 ◽  
Vol 14 (1) ◽  
pp. 142
Author(s):  
Jiang Ye ◽  
Yuxuan Qiang ◽  
Rui Zhang ◽  
Xinguo Liu ◽  
Yixin Deng ◽  
...  

The lack of ground control points (GCPs) affects the elevation accuracy of digital surface models (DSMs) generated by optical satellite stereo images and limits the application of high-resolution DSMs. It is a feasible idea to use ICESat-2 (Ice, Cloud, and land Elevation Satellite-2) laser altimetry data to improve the elevation accuracy of optical stereo images, but it is necessary to accurately match the two types of data. This paper proposes a DSM registration strategy based on terrain similarity (BOTS), which integrates ICESat-2 laser altimetry data without GCPs and improves the DSM elevation accuracy generation from optical satellite stereo pairs. Under different terrain conditions, Worldview-2, SV-1, GF-7, and ZY-3 stereo pairs were used to verify the effectiveness of this method. The experimental results show that the BOTS method proposed in this paper is more robust when there are a large number of abnormal points in the ICESat-2 data or there is a large elevation gap between DSMs. After fusion of ICESat-2 data, the DSM elevation accuracy extracted from the satellite stereo pair is improved by 73~92%, and the root mean square error (RMSE) of Worldview-2 DSM reaches 0.71 m.


Sensors ◽  
2019 ◽  
Vol 19 (23) ◽  
pp. 5062
Author(s):  
Liu ◽  
Xiao

To determine the geolocation of a pixel for spaceborne synthetic aperture radar (SAR) images, traditional indirect geolocation methods can cause great computational complexity. In this paper, a fast, three-dimensional, indirect geolocation method without ground control points (GCPs) is presented. First, the Range-Doppler (RD) geolocation model with all the equations in the Earth-centered rotating (ECR) coordinate system is introduced. By using an iterative analytical geolocation method (IAGM), the corner point locations of a quadrangle SAR image on the Earth’s surface are obtained. Then, a three-dimensional (3D) grid can be built by utilizing the digital surface model (DSM) data in this quadrangle. Through the proportional relationship for every pixel in the 3D grid, the azimuth time can be estimated, which is the key to decreasing the calculation time of the Doppler centroid. The results show that the proposed method is about 12 times faster than the traditional method, and that it maintains geolocation accuracy. After acquiring the precise azimuth time, it is easy to obtain the range location. Therefore, the spaceborne SAR image can be geolocated to the Earth surface precisely based on the high-resolution DSM data.


Sensors ◽  
2017 ◽  
Vol 17 (2) ◽  
pp. 240 ◽  
Author(s):  
Zhenling Ma ◽  
Xiaoliang Wu ◽  
Li Yan ◽  
Zhenliang Xu

2020 ◽  
Vol 194 ◽  
pp. 05030
Author(s):  
Yin Yaqiu ◽  
Jiang Cunhao ◽  
Lv Jing ◽  
Wang Jie ◽  
Ju Xing ◽  
...  

Taking the Xiangwang bauxite mining of Xiaoyi City, Shanxi Province as the research object, the DJi “Wu”inspire2 model Unmanned aerial vehicle (UAV) was used to obtain the video data, image data and Ground control points (GCP) data of a typical pit in the study area. Based on the two kinds of data source (video data and image data), the Digital surface model (DSM) of the research area was acquired with or without ground control points through aerial triangulation and block adjustment. Using the DSM obtained by the two data source, the distribution of elevation, slope, slope direction, surface fluctuation and surface roughness was extracted and compared. Research shows that the DSM, acquired by the ContextCapture software without GCP, using video data obtained by aerial shooting around one interest point, can qualitatively reflect the topographic distribution of the land surface. The DSM got by the video data with the GCP can achieve the similar accuracy with the result obtained by image data, and the topographic information acquired by the two kinds of data source has highly similar characteristics in spatial and numerical distribution. It can be concluded through comparison and analysis of the topographical factors that steep slopes with complex topography and large elevation difference distributes in the northwest-central of the pit, of which northwest and southwest slopes can be easily eroded by wind and rain, so attention should be paid to slop stability monitoring and disaster prevention in this area. As a whole, the results show that video data obtained by UAV can not only reflect the dynamic changes of the land surface qualitatively, but also can describe the distribution of surface topography quantitatively through processing to get the DSM. It has great application potential in the field of disaster emergency monitoring and geological hazard risk assessment in mining areas.


2021 ◽  
Vol 11 (20) ◽  
pp. 9482
Author(s):  
Fran Domazetović ◽  
Ante Šiljeg ◽  
Ivan Marić ◽  
Josip Faričić ◽  
Emmanuel Vassilakis ◽  
...  

The accurate extraction of a coastline is necessary for various studies of coastal processes, as well as for the management and protection of coastal areas. Very high-resolution satellite imagery has great potential for coastline extraction; however, noises in spectral data can cause significant errors. Here, we present a newly developed Coastal Extraction Tool (CET) that overcomes such errors and allows accurate and time-efficient automated coastline extraction based on a combination of WorldView-2 (WV-2) multispectral imagery and stereo-pair-derived digital surface model (DSM). Coastline extraction is performed and tested on the Iž-Rava island group, situated within the Northern Dalmatian archipelago (Croatia). Extracted coastlines were compared to (a) coastlines extracted from state topographic map (1:25,000), and (b) coastline extracted by another available tool. The accuracy of the extracted coastline was validated with centimeter accuracy reference data acquired using a UAV system (Matrice 600 Pro + MicaSense RedEdge-MX). Within the study area, two small islets were detected that have not been mapped during the earlier coastline mapping efforts. CET proved to be a highly accurate coastline mapping technique that successfully overcomes spectral-induced errors. In future research, we are planning to integrate data obtained by UAVs infrared thermography (IRT) and in situ sensors, measuring sea and land surface temperatures (SST and LST), into the CET, given that this has shown promising results. Considering its accuracy and ease of use, we suggest that CET can be applied for automated coastline extraction in other large and indented coastal areas. Additionally, we suggest that CET could be applied in longitudinal geomorphological coastal erosion studies for the automated detection of spatio-temporal coastline displacement.


2021 ◽  
Vol 62 (4) ◽  
pp. 38-47
Author(s):  
Long Quoc Nguyen ◽  

To evaluate the accuracy of the digital surface model (DSM) of an open-pit mine produced using photos captured by the unmanned aerial vehicle equipped with the post-processing dynamic satellite positioning technology (UAV/PPK), a DSM model of the Deo Nai open-pit coal mine was built in two cases: (1) only using images taken from UAV/PPK and (2) using images taken from UAV/PPK and ground control points (GCPs). These DSMs are evaluated in two ways: using checkpoints (CPs) and comparing the entire generated DSM with the DSM established by the electronic total station. The obtained results show that if using CPs, in case 1, the errors in horizontal and vertical dimension were 6.8 and 34.3 cm, respectively. When using two or more GCPs (case 2), the horizontal and vertical errors are at the centimetre-level (4.5 cm and 4.7 cm); if using the DSM comparison, the same accuracy as case 2 was also obtained.


Sign in / Sign up

Export Citation Format

Share Document