scholarly journals Muscle Recruitment Pattern of The Hamstring Muscles in Hip Extension and Knee Flexion Exercises

2020 ◽  
Vol 72 (1) ◽  
pp. 51-59 ◽  
Author(s):  
Osamu Yanagisawa ◽  
Atsuki Fukutani

AbstractWe aimed to compare dynamic exercise performance between hip extension exercises with different knee angles and between knee flexion exercises with different hip angles, and to investigate the recruitment pattern of the hamstrings in each exercise. Seven men performed 4 isokinetic exercises (3 maximal concentric contractions at 30°/s (peak torque) and 30 maximal concentric contractions at 180°/s (total work)): hip extension with the knee fully extended (HEke) and with the knee flexed at 90° (HEkf) and knee flexion with the hip fully extended (KFhe) and with the hip flexed at 90° (KFhf). The recruitment pattern of the hamstrings was evaluated in each exercise using magnetic resonance imaging (T2 calculation). The HEke condition showed significantly greater peak torque than the HEkf condition (p < 0.05). The KFhf condition had significantly greater peak torque and total work values than the KFhe condition (p < 0.05). Although the biceps femoris long head, semitendinosus, and semimembranosus had significantly increased post-exercise T2 values in the HEke (p < 0.05), KFhe, and KFhf conditions (p < 0.01), the T2 increase values were significantly greater under the KFhf than the HEke condition (p < 0.05). The semitendinosus showed a significantly greater T2 increase value than other muscles under both KFhe and KFhf conditions (p < 0.05). Performance of hip extension and knee flexion exercises increases when the hamstring muscles are in a lengthened condition. The hamstring muscles (particularly the semitendinosus) are more involved in knee flexion than in hip extension.

2021 ◽  
pp. 1-6
Author(s):  
Raki Kawama ◽  
Masamichi Okudaira ◽  
Hirohiko Maemura ◽  
Satoru Tanigawa

Context: Strength deficits of the hamstrings following sports injuries decrease athletic performance and increase the risk of injury recurrence. Previous studies have shown a high correlation between the muscular strength during hip-extension and knee-flexion and total muscle size of the hamstrings. However, it remains unclear which region of the individual hamstring muscles is closely associated with muscular strength. Objective: To investigate the relationship between the size of each region of the individual hamstring muscles and muscular strength during hip extension and knee flexion. Design: Within-subject repeated measures. Setting: University laboratory. Participants: Twenty healthy young male volunteers who regularly engaged in sports activities. Outcome Measures: Anatomical cross-sectional areas were acquired from the proximal, middle, and distal regions of the biceps femoris long head, biceps femoris short head, semitendinosus, and semimembranosus. Hip-extension and knee-flexion strength were measured during maximal voluntary isometric and concentric contractions (angular velocities of 60°/s and 180°/s). Results: The anatomical cross-sectional area of the distal regions in biceps femoris long head (r = .525–.642) and semitendinosus (r = .567) were significantly correlated with hip-extension strength under all conditions and only at an angular velocity of 180°/s, respectively. Meanwhile, anatomical cross-sectional areas of the distal regions in biceps femoris short head (r = .587–.684) and semimembranosus (r = .569–.576) were closely associated with knee-flexion strength under all conditions. Conclusion: These results suggest that muscle size in the distal regions of biceps femoris long head and semitendinosus greatly contributes to the production of hip-extension strength, whereas that of biceps femoris short head and semimembranosus significantly contributes to the generation of knee-flexion strength. These findings could be useful for designing training and rehabilitation programs to efficiently improve strength deficits following sports injuries such as strain injury and anterior cruciate ligament tears.


2021 ◽  
Vol 11 (22) ◽  
pp. 10509
Author(s):  
Dario Santos ◽  
Fernando Massa ◽  
Jorge Dominguez ◽  
Isabel Morales ◽  
Juan Del Castillo ◽  
...  

The quantitative dynamic monitoring of the performance of hamstring muscles during rehabilitation and training cannot currently be undertaken using elastic resistance bands. Hip extension with a fully extended knee involves hamstring agonists, while knee flexion involves only the hamstring. The purpose of this study is to provide normative values of torque, velocity and power involving hamstring muscles opposing elastic bands. Twenty amateur athletes aged 25.7 ± 4.9, were studied during two motor tasks—hip extension and knee flexion, both isometric & dynamic—with an elastic resistance band and DINABANG portable instrument. We compared the peak isometric torque in hip extension with agonists (2.93 Nm/kg) and without them (1.21 Nm/kg): the difference is significant. The peak angular limb velocity—starting at 50% of the maximum torque—is smaller in hip extension with agonists (215.96°/s) than in a knee flexion without them (452.56°/s). The combination of peak torque and peak velocity estimates power and there is no difference (p = 0.051) with and without agonists: 452.56°Nm/s.kg without agonists and 542.13°Nm/s.kg with them. This study opens the possibility of monitoring torque–velocity–power profiles for hamstring exercise in open chain.


PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0245838
Author(s):  
Norikazu Hirose ◽  
Yoshinori Kagaya ◽  
Masaaki Tsuruike

This study aimed to investigate the influence of the task type on the relative electromyography (EMG) activity of biceps femoris long head (BFlh) to semitendinosus (ST) muscles, and of proximal to distal regions during isometric leg-curl (LC) and hip-extension (HE). Twenty male volunteers performed isometric LC with the knee flexed to 30° (LC30) and 90° (LC90), as well as isometric HE with the knee extended (HE0) and flexed to 90° (HE90), at 40% and 100% maximal voluntary contraction (MVIC). Hip position was neutral in all conditions. EMG activity was recorded from the proximal and distal region of the BFlh and ST muscles. BFlh/ST was calculated from the raw root-mean-square (RMS) amplitudes. The RMS of 40% MVIC was normalized using MVIC data and the proximal/distal (P/D) ratio of normalized EMG (NEMG) was calculated. The BFlh/ST ratio was higher in HE0 than in LC90 during MVIC and 40% MVIC (p<0.05), and was higher in HE90 than in LC90 (p<0.05) during 40% MVIC at the proximal region, whereas no difference was observed between HE0 and LC30. There was no inter-task difference in BFlh/ST ratio in the distal region. Furthermore, the P/D ratio was higher in LC90 than in LC30 and HE0 (p<0.05) in BFlh and ST muscles, and was higher in HE90 than in LC30 and HE0 (p<0.05) in BFlh during 40% MVIC. However, there was no difference in P/D ratio between LC30 and LC90, and HE0 and HE90. This showed that there was no task-dependent difference in the EMG activity of the BFlh muscle relative to the ST muscle between prone hip extension and prone knee flexion when the knee joint was set at an equivalent angle. Similarly, there was no task-dependent difference in the NEMG of the proximal region relative to the distal region in BFlh and ST muscles during 40% MVIC.


2014 ◽  
Vol 9 (2) ◽  
pp. 358-361 ◽  
Author(s):  
Scott R. Brown ◽  
Matt Brughelli ◽  
Peter C. Griffiths ◽  
John B. Cronin

Purpose:While several studies have documented isokinetic knee strength in junior and senior rugby league players, investigations of isokinetic knee and hip strength in professional rugby union players are limited. The purpose of this study was to provide lower-extremity strength profiles and compare isokinetic knee and hip strength of professional rugby league and rugby union players.Participants:32 professional rugby league and 25 professional rugby union players.Methods:Cross-sectional analysis. Isokinetic dynamometry was used to evaluate peak torque and strength ratios of the dominant and nondominant legs during seated knee-extension/flexion and supine hip-extension/flexion actions at 60°/s.Results:Forwards from both codes were taller and heavier and had a higher body-mass index than the backs of each code. Rugby union forwards produced significantly (P < .05) greater peak torque during knee flexion in the dominant and nondominant legs (ES = 1.81 and 2.02) compared with rugby league forwards. Rugby league backs produced significantly greater hip-extension peak torque in the dominant and nondominant legs (ES = 0.83 and 0.77) compared with rugby union backs. There were no significant differences in hamstring-to-quadriceps ratios between code, position, or leg. Rugby union forwards and backs produced significantly greater knee-flexion-to-hip-extension ratios in the dominant and nondominant legs (ES = 1.49–2.26) than rugby union players.Conclusions:It seems that the joint torque profiles of players from rugby league and union codes differ, which may be attributed to the different demands of each code.


2013 ◽  
Vol 18 (4) ◽  
pp. 303-307 ◽  
Author(s):  
Sun-Young Kang ◽  
Hye-Seon Jeon ◽  
Ohyun Kwon ◽  
Heon-seock Cynn ◽  
Boram Choi

2021 ◽  
Vol 58 ◽  
pp. 102541
Author(s):  
A. Hegyi ◽  
D. Csala ◽  
B. Kovács ◽  
A. Péter ◽  
B.X.W. Liew ◽  
...  

Author(s):  
Wootaek Lim

BACKGROUND: In clinical practice, knee flexion at the prone position for manual muscle testing of hamstrings and hip extension at the supine position for stretching of hamstring muscles are typically proposed. OBJECTIVE: Although different positions have been proposed for different purposes in hamstrings, the understanding of the changing the functional role of hamstrings with position changes is poorly understood. METHODS: The electromyographic (EMG) activity and hip extension force were compared among different postures; hip neutral, internal, and external rotation. EMG and force were measured in prone position during knee flexion and those were additionally measured in supine position during hip extension. In supine position, additional measurements were made in hip neutral, internal and external rotation. RESULTS: Hamstrings showed high EMG activity during knee flexion. Knee flexion force in prone position was significantly decreased at hip extension force in supine position. In supine position, EMG activity was significantly higher in semitendinosus (ST) than biceps femoris (BF) during internal rotation. CONCLUSIONS: It should be noted that bi-articular muscles may have different functional dependencies on the corresponding muscles for each joint. In addition, because the altered alignment of the hamstring muscles that was affected by hip rotation had a significant effect on muscle activity, and hip rotation may be helpful for selective training of medial or lateral hamstrings.


2020 ◽  
pp. 1-9
Author(s):  
Matthew S. Briggs ◽  
Claire Spech ◽  
Rachel King ◽  
Mike McNally ◽  
Matthew Paponetti ◽  
...  

Obese (OB) youth demonstrate altered knee mechanics and worse lower-extremity performance compared with healthy weight (HW) youth. Our objectives were to compare sagittal plane knee landing mechanics between OB and HW youth and to examine the associations of knee and hip extension peak torque with landing mechanics in OB youth. Twenty-four OB and 24 age- and sex-matched HW youth participated. Peak torque was measured and normalized to leg lean mass. Peak knee flexion angle and peak internal knee extension moment were measured during a single-leg hop landing. Paired t tests, Pearson correlation coefficients, and Bonferroni corrections were used. OB youth demonstrated worse performance and lower knee extension (OB: 12.76 [1.38], HW: 14.03 [2.08], P = .03) and hip extension (OB: 8.59 [3.13], HW: 11.10 [2.89], P = .005) peak torque. Furthermore, OB youth demonstrated lower peak knee flexion angles (OB: 48.89 [45.41 to 52.37], HW: 56.07 [52.59 to 59.55], P = .02) and knee extension moments (OB: −1.73 [−1.89 to −1.57], HW: −2.21 [−2.37 to −2.05], P = .0001) during landing compared with HW youth. Peak torque measures were not correlated with peak knee flexion angle nor internal knee extension moment during landing in either group (P > .01). OB youth demonstrated altered landing mechanics compared with HW youth. However, no associations among peak torque measurements and knee landing mechanics were present.


1989 ◽  
Vol 67 (5) ◽  
pp. 1820-1826 ◽  
Author(s):  
J. E. Greenleaf ◽  
E. M. Bernauer ◽  
A. C. Ertl ◽  
T. S. Trowbridge ◽  
C. E. Wade

The purpose was to test the hypothesis that twice daily, short-term, variable intensity isotonic and intermittent high-intensity isokinetic leg exercise would maintain peak O2 uptake (VO2) and muscular strength and endurance, respectively, at or near ambulatory control levels during 30 days of -6 degrees head-down bed rest (BR) deconditioning. Nineteen men (aged 32-42 yr) were divided into no exercise control (peak VO2 once/wk, n = 5), isokinetic (Lido ergometer, n = 7), and isotonic (Quinton ergometer, n = 7) groups. Exercise training was conducted in the supine position for two 30-min periods/day for 5 days/wk. Isotonic training was at 60-90% of peak VO2, and isokinetic training (knee flexion-extension) was at 100 degrees/s. Mean (+/- SE) changes (P less than 0.05) in peak VO2 (ml.m-1.kg-1) from ambulatory control to BR day 28 were 44 +/- 4 to 36 +/- 3, -18.2% (3.27-2.60 l/m) for no exercise, 39 +/- 4 to 40 +/- 3, +2.6% (3.13-3.14 l/min) for isotonic, and 44 +/- 3 to 40 +/- 2, -9.1% (3.24-2.90 l/min) for isokinetic. There were no significant changes in any groups in leg peak torque (right knee flexion or extension), leg mean total work, arm total peak torque, or arm mean total work. Mean energy costs for the isotonic and isokinetic exercise training were 446 kcal/h (18.8 +/- 1.6 ml.min-1.kg-1) and 214 kcal/h (8.9 +/- 0.5 ml.m-1.kg-1), respectively. Thus near-peak, variable intensity, isotonic leg exercise maintains peak VO2 during 30 days of BR, while this peak, intermittent, isokinetic leg exercise protocol does not.


Sports ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 119
Author(s):  
Manon Riccetti ◽  
Jules Opplert ◽  
Joao L. Q. Durigan ◽  
Carole Cometti ◽  
Nicolas Babault

This study aimed to explore the acute effects of static stretching on the musculotendinous properties of two hamstring muscles. Twelve male volunteers underwent two testing sessions. One session was dedicated to the evaluation of the semitendinosus muscle before (PRE) and after (POST) static stretching (five sets of 30-s stretching), and the other session similarly explored the long head of biceps femoris muscle. In addition to the displacement of the myotendinous junction (MTJ), passive torque and maximal voluntary isometric torque (MVIT) were evaluated. MVIT (−8.3 ± 10.2%, p = 0.0036, d = 0.497) and passive torque (−28.4 ± 16.9%, p = 0.0003, d = 1.017) were significantly decreased POST stretching. PRE stretching, MTJ displacement was significantly greater for semitendinosus muscle than biceps femoris muscle (27.0 ± 5.2 vs. 18.6 ± 3.6, p = 0.0011, d = 1.975). After the stretching procedure, greater MTJ displacement relative changes were observed for biceps femoris muscle as compared to semitendinosus muscle (22.4 ± 31.6 vs. −8.4 ± 17.9, p = 0.0167, d = 1.252). Because of the smaller MTJ displacement PRE stretching and greater alteration POST stretching in biceps femoris muscles, the present study demonstrated muscle-specific acute responses of hamstring muscles during stretching. Although stretching acutely impairs torque production, the passive torque reduction and alteration of MTJ displacement might impact hamstring injury prevention.


Sign in / Sign up

Export Citation Format

Share Document