scholarly journals The task dependent differences in electromyography activity of hamstring muscles during leg curls and hip extensions

PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0245838
Author(s):  
Norikazu Hirose ◽  
Yoshinori Kagaya ◽  
Masaaki Tsuruike

This study aimed to investigate the influence of the task type on the relative electromyography (EMG) activity of biceps femoris long head (BFlh) to semitendinosus (ST) muscles, and of proximal to distal regions during isometric leg-curl (LC) and hip-extension (HE). Twenty male volunteers performed isometric LC with the knee flexed to 30° (LC30) and 90° (LC90), as well as isometric HE with the knee extended (HE0) and flexed to 90° (HE90), at 40% and 100% maximal voluntary contraction (MVIC). Hip position was neutral in all conditions. EMG activity was recorded from the proximal and distal region of the BFlh and ST muscles. BFlh/ST was calculated from the raw root-mean-square (RMS) amplitudes. The RMS of 40% MVIC was normalized using MVIC data and the proximal/distal (P/D) ratio of normalized EMG (NEMG) was calculated. The BFlh/ST ratio was higher in HE0 than in LC90 during MVIC and 40% MVIC (p<0.05), and was higher in HE90 than in LC90 (p<0.05) during 40% MVIC at the proximal region, whereas no difference was observed between HE0 and LC30. There was no inter-task difference in BFlh/ST ratio in the distal region. Furthermore, the P/D ratio was higher in LC90 than in LC30 and HE0 (p<0.05) in BFlh and ST muscles, and was higher in HE90 than in LC30 and HE0 (p<0.05) in BFlh during 40% MVIC. However, there was no difference in P/D ratio between LC30 and LC90, and HE0 and HE90. This showed that there was no task-dependent difference in the EMG activity of the BFlh muscle relative to the ST muscle between prone hip extension and prone knee flexion when the knee joint was set at an equivalent angle. Similarly, there was no task-dependent difference in the NEMG of the proximal region relative to the distal region in BFlh and ST muscles during 40% MVIC.

2021 ◽  
pp. 1-6
Author(s):  
Raki Kawama ◽  
Masamichi Okudaira ◽  
Hirohiko Maemura ◽  
Satoru Tanigawa

Context: Strength deficits of the hamstrings following sports injuries decrease athletic performance and increase the risk of injury recurrence. Previous studies have shown a high correlation between the muscular strength during hip-extension and knee-flexion and total muscle size of the hamstrings. However, it remains unclear which region of the individual hamstring muscles is closely associated with muscular strength. Objective: To investigate the relationship between the size of each region of the individual hamstring muscles and muscular strength during hip extension and knee flexion. Design: Within-subject repeated measures. Setting: University laboratory. Participants: Twenty healthy young male volunteers who regularly engaged in sports activities. Outcome Measures: Anatomical cross-sectional areas were acquired from the proximal, middle, and distal regions of the biceps femoris long head, biceps femoris short head, semitendinosus, and semimembranosus. Hip-extension and knee-flexion strength were measured during maximal voluntary isometric and concentric contractions (angular velocities of 60°/s and 180°/s). Results: The anatomical cross-sectional area of the distal regions in biceps femoris long head (r = .525–.642) and semitendinosus (r = .567) were significantly correlated with hip-extension strength under all conditions and only at an angular velocity of 180°/s, respectively. Meanwhile, anatomical cross-sectional areas of the distal regions in biceps femoris short head (r = .587–.684) and semimembranosus (r = .569–.576) were closely associated with knee-flexion strength under all conditions. Conclusion: These results suggest that muscle size in the distal regions of biceps femoris long head and semitendinosus greatly contributes to the production of hip-extension strength, whereas that of biceps femoris short head and semimembranosus significantly contributes to the generation of knee-flexion strength. These findings could be useful for designing training and rehabilitation programs to efficiently improve strength deficits following sports injuries such as strain injury and anterior cruciate ligament tears.


2020 ◽  
Vol 72 (1) ◽  
pp. 51-59 ◽  
Author(s):  
Osamu Yanagisawa ◽  
Atsuki Fukutani

AbstractWe aimed to compare dynamic exercise performance between hip extension exercises with different knee angles and between knee flexion exercises with different hip angles, and to investigate the recruitment pattern of the hamstrings in each exercise. Seven men performed 4 isokinetic exercises (3 maximal concentric contractions at 30°/s (peak torque) and 30 maximal concentric contractions at 180°/s (total work)): hip extension with the knee fully extended (HEke) and with the knee flexed at 90° (HEkf) and knee flexion with the hip fully extended (KFhe) and with the hip flexed at 90° (KFhf). The recruitment pattern of the hamstrings was evaluated in each exercise using magnetic resonance imaging (T2 calculation). The HEke condition showed significantly greater peak torque than the HEkf condition (p < 0.05). The KFhf condition had significantly greater peak torque and total work values than the KFhe condition (p < 0.05). Although the biceps femoris long head, semitendinosus, and semimembranosus had significantly increased post-exercise T2 values in the HEke (p < 0.05), KFhe, and KFhf conditions (p < 0.01), the T2 increase values were significantly greater under the KFhf than the HEke condition (p < 0.05). The semitendinosus showed a significantly greater T2 increase value than other muscles under both KFhe and KFhf conditions (p < 0.05). Performance of hip extension and knee flexion exercises increases when the hamstring muscles are in a lengthened condition. The hamstring muscles (particularly the semitendinosus) are more involved in knee flexion than in hip extension.


2021 ◽  
Vol 6 (1) ◽  
pp. 18
Author(s):  
João R. Vaz ◽  
Tiago Neto ◽  
José Pedro Correia ◽  
Jorge Infante ◽  
Sandro R. Freitas

This study sought to investigate whether the stiffness of the biceps femoris long head differs between proximal and distal regions during isometric knee flexion at different contraction intensities and muscle lengths. Twelve healthy individuals performed knee flexion isometric contractions at 20% and 60% of maximum voluntary isometric contraction, with the knee flexed at 15 and 45 degrees. Muscle stiffness assessment was performed using ultrasound-based shear wave elastography. Proximal and distal regions of the biceps femoris long head were assessed. Biceps femoris long head muscle showed a greater stiffness (i) in the distal region, (ii) at higher contraction intensity, and (iii) at longer muscle length. The proximal-to-distal stiffness ratio was significantly lower than 1 (i.e., heterogenous) at lower contraction intensity regardless of the muscle length. However, this was not observed at higher contraction intensity. This study is the first to show heterogeneity in the active stiffness of the biceps femoris long head. Given the greater incidence of injury at the proximal region of biceps femoris long head, this study opens new directions for future research. Additionally, the present study results indicate that studies assessing muscle stiffness at one single muscle region should be interpreted with caution.


2020 ◽  
pp. 1-8
Author(s):  
Dasom Oh ◽  
Wootaek Lim

BACKGROUND: Although the medial and lateral hamstrings are clearly distinct anatomically and have different functions in the transverse plane, they are often considered as one muscle during rehabilitation. OBJECTIVE: The purpose of the study was to compare the electromyographic (EMG) activity between the prone position and the supine position during maximal isometric contraction and to additionally confirm the effect of submaximal isometric contractions on EMG activity of medial and lateral hamstrings, and force. METHODS: In the prone position, EMG activities of the long head of biceps femoris (BFLH) and semitendinosus (ST) were measured during the maximal isometric contraction. In the supine position, hip extension force with EMG activity were measured during the maximal and the submaximal isometric contractions. RESULTS: EMG activity in the prone position was significantly decreased in the supine position. In the supine position, there was a significant difference between the BFLH and ST during the maximal isometric contraction, but not during the submaximal isometric contractions. CONCLUSIONS: The dependence on the hamstrings could be relatively lower during hip extensions. When the medial and lateral hamstrings are considered separately, the lateral hamstrings may show a more active response, with increased muscle length, in clinical practice.


2018 ◽  
Vol 2 (2) ◽  
pp. 58-63 ◽  
Author(s):  
Fearghal P. Behan ◽  
Robin Vermeulen ◽  
Tessa Smith ◽  
Javier Arnaiz ◽  
Rodney Whiteley ◽  
...  

2021 ◽  
pp. 1-6
Author(s):  
Toshiaki Soga ◽  
Taspol Keerasomboon ◽  
Kei Akiyama ◽  
Norikazu Hirose

Context: This study aimed to examine the differences in electromyographic (EMG) activity of the biceps femoris long head (BFlh) and semitendinosus (ST) muscles, break-point angle (BPA), and the angle at peak BFlh EMG activity between bilateral and unilateral Nordic hamstring exercise (NHE) on a sloped platform. Design: This study was designed as a case-control study. Methods: Fourteen men participated in the study. The participants initially performed maximum voluntary isometric contraction (MVIC) on the prone leg curl to normalize the peak hamstring EMG amplitude as the %MVIC. Then, participants were randomized to perform the following 3 variations of NHE: bilateral (N40) or unilateral (N40U) NHE with a platform angle of 40°, and unilateral NHE with a platform angle of 50° (N50U). The EMG activities of the BFlh and ST and the knee flexion angle during the NHE variations were recorded to calculate the EMG activity of the BFlh and ST in terms of the %MVIC, the angle at peak BFlh EMG, and BPA. Results: The BFlh %MVIC was significantly higher in N40U (P < .05) and N50U (P < .05) than in N40. A significant difference in BFlh %MVIC and ST %MVIC was observed between N40U (P < .05) and N50U (P < .05). The mean values of BPA and the angle at peak BFlh EMG were <30° for all NHE variations. Conclusions: In the late swing phase of high-speed running, BFlh showed higher EMG activity; thus, unilateral NHE may be a specific hamstring exercise for hamstring injury prevention.


2019 ◽  
Vol 37 (21) ◽  
pp. 2452-2458
Author(s):  
Fearghal P. Behan ◽  
Rachael Moody ◽  
Tejal Sarika Patel ◽  
Edward Lattimore ◽  
Thomas M. Maden-Wilkinson ◽  
...  

Neurology ◽  
2020 ◽  
Vol 94 (9) ◽  
pp. e897-e909 ◽  
Author(s):  
Alison M. Barnard ◽  
Rebecca J. Willcocks ◽  
William T. Triplett ◽  
Sean C. Forbes ◽  
Michael J. Daniels ◽  
...  

ObjectiveTo investigate the potential of lower extremity magnetic resonance (MR) biomarkers to serve as endpoints in clinical trials of therapeutics for Duchenne muscular dystrophy (DMD) by characterizing the longitudinal progression of MR biomarkers over 48 months and assessing their relationship to changes in ambulatory clinical function.MethodsOne hundred sixty participants with DMD were enrolled in this longitudinal, natural history study and underwent MR data acquisition of the lower extremity muscles to determine muscle fat fraction (FF) and MRI T2 biomarkers of disease progression. In addition, 4 tests of ambulatory function were performed. Participants returned for follow-up data collection at 12, 24, 36, and 48 months.ResultsLongitudinal analysis of the MR biomarkers revealed that vastus lateralis FF, vastus lateralis MRI T2, and biceps femoris long head MRI T2 biomarkers were the fastest progressing biomarkers over time in this primarily ambulatory cohort. Biomarker values tended to demonstrate a nonlinear, sigmoidal trajectory over time. The lower extremity biomarkers predicted functional performance 12 and 24 months later, and the magnitude of change in an MR biomarker over time was related to the magnitude of change in function. Vastus lateralis FF, soleus FF, vastus lateralis MRI T2, and biceps femoris long head MRI T2 were the strongest predictors of future loss of function, including loss of ambulation.ConclusionsThis study supports the strong relationship between lower extremity MR biomarkers and measures of clinical function, as well as the ability of MR biomarkers, particularly those from proximal muscles, to predict future ambulatory function and important clinical milestones.ClinicalTrials.gov identifierNCT01484678.


2020 ◽  
Vol 15 (1) ◽  
pp. 81-90 ◽  
Author(s):  
Mathieu Lacome ◽  
Simon Avrillon ◽  
Yannick Cholley ◽  
Ben M. Simpson ◽  
Gael Guilhem ◽  
...  

Aim: To compare the effect of low versus high volume of eccentric-biased hamstring training programs on knee-flexor strength and fascicle length changes in elite soccer players. Methods: A total of 19 elite youth soccer players took part in this study and were randomly assigned into 2 subgroups. For 6 weeks in-season, the groups performed either a low-volume (1 set per exercise; 10 repetitions in total) or a high-volume (4 sets; 40 repetitions) eccentric training of their knee flexors. After 6-weeks midtraining (MID), players performed the alternate training regimen. Each training set consisted of 4 repetitions of the Nordic hamstring exercise and 6 repetitions of the bilateral stiff-leg deadlift. Eccentric knee-flexor strength (NordBord) as well as biceps femoris long head and semimembranosus fascicle length (scanned with ultrasound scanner) were assessed during pretraining (PRE), MID, and posttraining (POST) tests. Results: Knee-flexor eccentric strength very likely increased from PRE to MID (low volume: +11.3% [7.8%] and high volume: 11.4% [5.3%]), with a possibly-to-likely increase in biceps femoris long head (+4.5% [5.0%] and 4.8% [2.5%]) and semimembranosus (+4.3% [4.7%] and 6.3% [6.3%]) fascicle length in both groups. There was no substantial changes between MID and POST. Overall, there was no clear between-group difference in the changes from PRE to MID and MID to POST for neither knee-flexor eccentric strength, biceps femoris long head, nor semimembranosus fascicle length. Conclusions: Low-volume knee-flexor eccentric training is as effective as a greater training dose to substantially improve knee-flexor strength and fascicle length in-season in young elite soccer players. Low volume is, however, likely more appropriate to be used in an elite team facing congested schedules.


Sign in / Sign up

Export Citation Format

Share Document