scholarly journals Everything is a question of time – age of important Quaternary palaeontological finds from Westphalia

2017 ◽  
Vol 73 (3-4) ◽  
pp. 454-459
Author(s):  
Markus Bertling ◽  
Doris Döppes ◽  
Wilfried Rosendahl

Accelerator mass spectrometry (AMS) was used to establish the age of three mammal specimens from the Quaternary of the Münsterland, North Rhine-Westphalia, Germany. The dated samples represent regionally important finds: The woolly mammoth from Ahlen with an age of 41 ka BP and the musk-ox from Herne with an age of 24 ka BP are typical representatives of the so-called mammoth steppe. The European Bison from Gladbeck with an age of 9.2 ka BP confirms the Early Holocene appearance of this species in Europe.

2014 ◽  
Vol 79 (4) ◽  
pp. 782-793 ◽  
Author(s):  
John W. Ives ◽  
Duane Froese ◽  
Matthew Collins ◽  
Fiona Brock

AbstractThe Grenfell bone rod resembles other instances of Clovis-era organic or osseous technology and has on a number of occasions been considered with other Clovis bone, antler, and ivory rods or beveled artifacts. It had been suspected of being constructed from proboscidean long bone. As an early discovery (made in 1883), the Grenfell artifact had somewhat obscure provenience details and a lengthy curatorial history. We describe accelerator mass spectrometry and zooarchaeology by mass spectrometry methods that allow rapid, minimally destructive determinations of both the age and the raw material composition of osseous artifacts. Our analysis reveals that the Grenfell artifact is actually a terminal Paleoindian-era manifestation made of bison bone. Similar methods could be more widely applied in North America in order to build more refined data sets for osseous technologies. These results also reveal the ease with which archaeologists can secure additional information from existing collections, highlighting our ethical obligations to do so.


2017 ◽  
Vol 12 (2) ◽  
pp. 429-452 ◽  
Author(s):  
Kay Scaramelli ◽  
Franz Scaramelli

Abstract Initial archaeological investigations at Cerro Gavilán 2, a rockshelter located in the Bolívar State of Venezuela, reveal evidence for human activity that spans the Early Holocene to the present. This report summarizes the information obtained through surface collection, limited excavation, and documentation of the surface features and rock art in the cave. Accelerator mass spectrometry (AMS) 14C analysis established dates from excavated strata that range between 9250 ± 60 BP to 3440 ± 40 BP, and are associated with a unifacial flake technology and charred faunal and floral remains, whereas surface remains span the known ceramic sequence for the area. Rock art corresponds to distinctive superimposed styles that indicate continual repainting of the cave through time, serving to anchor the site to the landscape for multiple societies inhabiting the region. It is suggested that the shelter may have fulfilled different functions over time and a sequence of seasonal residential, ritual, and funerary activities is proposed. The rich cultural context found in Cerro Gavilán 2 contributes to advances in Amazonian archaeology that are redefining our knowledge of early developments and the complexity of human/environmental interactions in tropical America.


Radiocarbon ◽  
2019 ◽  
Vol 61 (2) ◽  
pp. 615-627 ◽  
Author(s):  
Bente Philippsen ◽  
Livija Ivanovaitė ◽  
Kirill Makhotka ◽  
Florian Sauer ◽  
Felix Riede ◽  
...  

ABSTRACTOnly a limited number of radiometric dates for the Final Palaeolithic and the first half of the Mesolithic are available from the southeastern Baltic. This paper presents eight new Late Pleistocene/Early Holocene radiocarbon accelerator mass spectrometry (14C AMS) ages of osseous artifacts housed at the Kaliningrad Regional Museum of History and Art. These artifacts include one piece of worked reindeer (Rangifer tarandus) antler, three axes of the so-called Lyngby type, one bone point, one uniserial harpoon, one so-called bâton percé antler shaft, and one slotted bone. All the samples were successfully dated and yielded five Late Pleistocene and three Early Holocene ages, including the hitherto earliest age for human occupation in the Eastern Baltic. The dates include not only a surprisingly early date for a bone point (for this region), but also some dates that contradict expected ages based on traditional typological assessment. Our study significantly adds to the still small number of existing absolutely dated artifacts from the region and proposes new ways of viewing the Final Palaeolithic and Early Mesolithic chronology in the southeastern Baltic.


2003 ◽  
Vol 68 (2) ◽  
pp. 353-371 ◽  
Author(s):  
Bruce B. Huckell ◽  
C. Vance Haynes

Radiocarbon dating of charcoal samples and a re-examination of the artifacts from the Volcanic Debris layer in Ventana Cave were conducted in 1992-1994. The goal of this research was to better understand the chronological position and cultural affinities of the Ventana Complex, the name applied to the assemblage recovered from the Volcanic Debris. Ten new Accelerator Mass Spectrometry (AMS) 14C ages suggest that the Volcanic Debris accumulated between approximately 8800 B.P. and 10,500 B.P., and the lack of stratigraphic ordering of the dates indicates that the Volcanic Debris was subjected to considerable turbation as it accumulated. This turbation may have led to the incorporation of bones of extinct fauna from an underlying conglomerate deposit rich in horse remains, creating the impression of their association with artifacts. The artifacts are probably the product of episodic, special-purpose occupations spanning centuries or millennia. Technological and morphological studies of the stone tools indicate few similarities with classic Paleoindian industries, and greater similarities to early Holocene Archaic occupations in the Great Basin and Southwest. Correlations of the Ventana Cave stratigraphy with that of southeastern Arizona and with the late Pleistocene and Holocene record of Northern Hemisphere climate are explored.


Radiocarbon ◽  
2007 ◽  
Vol 49 (1) ◽  
pp. 123-129 ◽  
Author(s):  
Yaroslav V Kuzmin

The problem of a hiatus at about 6100–5300 BP (about 4900–4200 cal BC) in the prehistoric chronology of the Cis-Baikal region in Siberia is discussed. Based on a critical evaluation of existing evidence, there was no discontinuity found in the cultural sequence between the Kitoi and Serovo/Glazkovo complexes of the Neolithic, and the proposed “hiatus” may be an artifact based on underestimation of solid data. Conventional 14C dates are presented that were generated in the 1980s to early 2000s for Cis-Baikal prehistoric burial grounds, and were later dated by the accelerator mass spectrometry (AMS).


Radiocarbon ◽  
2021 ◽  
pp. 1-12
Author(s):  
G Quarta ◽  
M Molnár ◽  
I Hajdas ◽  
L Calcagnile ◽  
I Major ◽  
...  

ABSTRACT The application of accelerator mass spectrometry radiocarbon (AMS 14C) dating in forensics is made possible by the use of the large excursion of the 14C concentration in the post-WWII terrestrial atmosphere due to nuclear testing as a reference curve for data calibration. By this approach high-precision analyses are possible on samples younger than ∼70 years. Nevertheless, the routine, widespread application of the method in the practice of forensics still appears to be limited by different issues due to possible complex interpretation of the results. We present the results of an intercomparison exercise carried out in the framework of an International Atomic Energy Agency (IAEA) CRP-Coordinated Research Project between three AMS laboratories in Italy, Hungary, and Switzerland. Bone and ivory samples were selected with ages spanning from background (>50 ka) to 2018. The results obtained allow us to assess the high degree of reproducibility of the results and the remarkable consistency of the experimental determinations.


Radiocarbon ◽  
2001 ◽  
Vol 43 (2A) ◽  
pp. 249-254 ◽  
Author(s):  
J N Lanting ◽  
A T Aerts-Bijma ◽  
J van der Plicht

When dating unburnt bone, bone collagen, the organic fraction of the bone, is used. Collagen does not survive the heat of the cremation pyre, so dating of cremated bone has been considered impossible. Structural carbonate in the mineral fraction of the bone, however, survives the cremation process. We developed a method of dating cremated bone by accelerator mass spectrometry (AMS), using this carbonate fraction. Here we present results for a variety of prehistoric sites and ages, showing a remarkable success rate for this method.


Radiocarbon ◽  
2021 ◽  
pp. 1-19
Author(s):  
Federico Manuelli ◽  
Cristiano Vignola ◽  
Fabio Marzaioli ◽  
Isabella Passariello ◽  
Filippo Terrasi

ABSTRACT The Iron Age chronology at Arslantepe is the result of the interpretation of Luwian hieroglyphic inscriptions and archaeological data coming from the site and its surrounding region. A new round of investigations of the Iron Age levels has been conducted at the site over the last 10 years. Preliminary results allowed the combination of the archaeological sequence with the historical events that extended from the collapse of the Late Bronze Age empires to the formation and development of the new Iron Age kingdoms. The integration into this picture of a new set of radiocarbon (14C) dates is aimed at establishing a more solid local chronology. High precision 14C dating by accelerator mass spectrometry (AMS) and its correlation with archaeobotanical analysis and stratigraphic data are presented here with the purpose of improving our knowledge of the site’s history and to build a reliable absolute chronology of the Iron Age. The results show that the earliest level of the sequence dates to ca. the mid-13th century BC, implying that the site started developing a new set of relationships with the Levant already before the breakdown of the Hittite empire, entailing important historical implications for the Syro-Anatolian region at the end of the 2nd millennium BC.


Radiocarbon ◽  
2021 ◽  
pp. 1-7
Author(s):  
Corina Solís ◽  
Efraín Chávez ◽  
Arcadio Huerta ◽  
María Esther Ortiz ◽  
Alberto Alcántara ◽  
...  

ABSTRACT Augusto Moreno is credited with establishing the first radiocarbon (14C) laboratory in Mexico in the 1950s, however, 14C measurement with the accelerator mass spectrometry (AMS) technique was not achieved in our country until 2003. Douglas Donahue from the University of Arizona, a pioneer in using AMS for 14C dating, participated in that experiment; then, the idea of establishing a 14C AMS laboratory evolved into a feasible project. This was finally reached in 2013, thanks to the technological developments in AMS and sample preparation with automated equipment, and the backing and support of the National Autonomous University of Mexico and the National Council for Science and Technology. The Mexican AMS Laboratory, LEMA, with a compact 1 MV system from High Voltage Engineering Europa, and its sample preparation laboratories with IonPlus automated graphitization equipment, is now a reality.


Sign in / Sign up

Export Citation Format

Share Document