scholarly journals MHD two-layered unsteady fluid flow and heat transfer through a horizontal channel between

2014 ◽  
Vol 19 (1) ◽  
pp. 97-121 ◽  
Author(s):  
T. Linga Raju ◽  
M. Nagavalli

Abstract An unsteady magnetohydrodynamic (MHD) two-layered fluids flow and heat transfer in a horizontal channel between two parallel plates in the presence of an applied magnetic and electric field is investigated, when the whole system is rotated about an axis perpendicular to the flow. The flow is driven by a constant uniform pressure gradient in the channel bounded by two parallel insulating plates, when both fluids are considered as electrically conducting, incompressible with variable properties, viz. different viscosities, thermal and electrical conductivities. The transport properties of the two fluids are taken to be constant and the bounding plates are maintained at constant and equal temperatures. The governing partial differential equations are then reduced to the ordinary linear differential equations using two-term series. Closed form solutions for primary and secondary velocity, also temperature distributions are obtained in both the fluid regions of the channel. Profiles of these solutions are plotted to discuss the effects of the flow and heat transfer characteristics, and their dependence on the governing parameters involved, such as the Hartmann number, rotation parameter, ratios of the viscosities, heights, electrical and thermal conductivities

2013 ◽  
Vol 18 (3) ◽  
pp. 699-726 ◽  
Author(s):  
T. Linga Raju ◽  
M. Nagavalli

Abstract The unsteady magnetohydrodynamic flow of two immiscible fluids in a horizontal channel bounded by two parallel porous isothermal plates in the presence of an applied magnetic and electric field is investigated. The flow is driven by a constant uniform pressure gradient in the channel bounded by two parallel insulating plates, one being stationary and the other oscillating, when both fluids are considered as electrically conducting. Also, both fluids are assumed to be incompressible with variable properties, viz. different viscosities, thermal and electrical conductivities. The transport properties of the two fluids are taken to be constant and the bounding plates are maintained at constant and equal temperatures. The governing equations are partial in nature, which are then reduced to the ordinary linear differential equations using two-term series. Closed form solutions for velocity and temperature distributions are obtained in both fluid regions of the channel. Profiles of these solutions are plotted to discuss the effect on the flow and heat transfer characteristics, and their dependence on the governing parameters involved, such as the Hartmann number, porous parameter, ratios of the viscosities, heights, electrical and thermal conductivities


2020 ◽  
Vol 2020 ◽  
pp. 1-12 ◽  
Author(s):  
Umair Rashid ◽  
Thabet Abdeljawad ◽  
Haiyi Liang ◽  
Azhar Iqbal ◽  
Muhammad Abbas ◽  
...  

The focus of the present paper is to analyze the shape effect of gold (Au) nanoparticles on squeezing nanofluid flow and heat transfer between parallel plates. The different shapes of nanoparticles, namely, column, sphere, hexahedron, tetrahedron, and lamina, have been examined using water as base fluid. The governing partial differential equations (PDEs) are transformed into ordinary differential equations (ODEs) by suitable transformations. As a result, nonlinear boundary value ordinary differential equations are tackled analytically using the homotopy analysis method (HAM) and convergence of the series solution is ensured. The effects of various parameters such as solid volume fraction, thermal radiation, Reynolds number, magnetic field, Eckert number, suction parameter, and shape factor on velocity and temperature profiles are plotted in graphical form. For various values of involved parameters, Nusselt number is analyzed in graphical form. The obtained results demonstrate that the rate of heat transfer is maximum for lamina shape nanoparticles and the sphere shape of nanoparticles has performed a considerable role in temperature distribution as compared to other shapes of nanoparticles.


2016 ◽  
Vol 21 (3) ◽  
pp. 623-648
Author(s):  
T. Linga Raju ◽  
B. Neela Rao

Abstract The paper aims to analyze the heat transfer aspects of a two-layered fluid flow in a horizontal channel under the action of an applied magnetic and electric fields, when the whole system is rotated about an axis perpendicular to the flow. The flow is driven by a common constant pressure gradient in the channel bounded by two parallel porous insulating plates, one being stationary and the other one oscillatory. The fluids in the two regions are considered electrically conducting, and are assumed to be incompressible with variable properties, namely, different densities, viscosities, thermal and electrical conductivities. The transport properties of the two fluids are taken to be constant and the bounding plates are maintained at constant and equal temperature. The governing partial differential equations are then reduced to the ordinary linear differential equations by using a two-term series. The temperature distributions in both fluid regions of the channel are derived analytically. The results are presented graphically to discuss the effect on the heat transfer characteristics and their dependence on the governing parameters, i.e., the Hartmann number, Taylor number, porous parameter, and ratios of the viscosities, heights, electrical and thermal conductivities. It is observed that, as the Coriolis forces become stronger, i.e., as the Taylor number increases, the temperature decreases in the two fluid regions. It is also seen that an increase in porous parameter diminishes the temperature distribution in both the regions.


Author(s):  
P.R. Sharma ◽  
Gurminder Singh

PurposePhysical properties of a viscous fluid, e.g. viscosity and thermal conductivity change with temperature and in most of the studies concerned with natural convection, generally, the simultaneous effect of temperature dependent viscosity, thermal conductivity have been neglected. Hence, the purpose of this paper is to investigate the simultaneous effects of varying viscosity and thermal conductivity on free convection flow of a viscous incompressible electrically conducting fluid and heat transfer along an isothermal vertical non‐conducting plate in the presence of exponentially varying internal heat‐generation and uniform transverse magnetic field.Design/methodology/approachThe governing equations of motion and energy are transformed into ordinary differential equations using similarity transformation. The resulting boundary valued, coupled and non‐linear differential equations are converted into system of linear differential equations and solved using Runge‐Kutta fourth order technique along with shooting method.FindingsIt was found that: fluid velocity decreases with the increase in magnetic parameter or Prandtl number; fluid temperature increases with the increase in magnetic parameter; velocity and temperature profiles increase due to increase in heat generation parameter; varying viscosity and thermal conductivity modifies the flow and heat transfer characteristic; and skin‐friction and heat transfer are affected by simultaneous change in viscosity and thermal conductivity in presence/absence of exponentially varying heat generation.Research limitations/implicationsThe present study is applicable to an incompressible viscous fluid flow and heat transfer with linearly varying viscosity and thermal conductivity.Originality/valueThis paper provides useful information on the physical properties of a viscous fluid with regard to viscosity and thermal conductivity change with temperature.


Symmetry ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1335
Author(s):  
Vasile Marinca ◽  
Nicolae Herisanu

Based on a new kind of analytical approach, namely the Optimal Auxiliary Functions Method (OAFM), a new analytical procedure is proposed to solve the problem of the annular axisymmetric stagnation flow and heat transfer on a moving cylinder with finite radius. As a novelty, explicit analytical solutions were obtained for the considered complex problem. First, the Navier–Stokes equations were simplified by means of similarity transformations that depended on different parameters and some combinations of these parameters, and the problem under study was reduced to six nonlinear ordinary differential equations with six unknowns. The OAFM proves to be a powerful tool for finding an accurate analytical solution for nonlinear problems, ensuring a fast convergence after the first iteration, even if the small or large parameters are absent, since the determination of the convergence-control parameters is independent of the magnitude of the coefficients that appear in the nonlinear differential equations. Concerning the main novelties of the proposed approach, it is worth mentioning the presence of some auxiliary functions, the involvement of the convergence-control parameters, the construction of the first iteration and much freedom to select the procedure for determining the optimal values of the convergence-control parameters.


1987 ◽  
Vol 109 (1) ◽  
pp. 25-30 ◽  
Author(s):  
K. M. Kelkar ◽  
S. V. Patankar

Fluid flow and heat transfer in two-dimensional finned passages were analyzed for constant property laminar flow. The passage is formed by two parallel plates to which fins are attached in a staggered fashion. Both the plates are maintained at a constant temperature. Streamwise periodic variation of the cross-sectional area causes the flow and temperature fields to repeat periodically after a certain developing length. Computations were performed for different values of the Reynolds number, the Prandtl number, geometric parameters, and the fin-conductance parameter. The fins were found to cause the flow to deflect significantly and impinge upon the opposite wall so as to increase the heat transfer significantly. However, the associated increase in pressure drop was an order of magnitude higher than the increase in heat transfer. Streamline patterns and local heat transfer results are presented in addition to the overall results.


Sign in / Sign up

Export Citation Format

Share Document