scholarly journals Determination of Constant Parameters of Copper as Power-Law Hardening Material at Different Test Conditions

2014 ◽  
Vol 19 (4) ◽  
pp. 687-698
Author(s):  
Md. A. Kowser ◽  
Md. Mahiuddin

Abstract In this paper a technique has been developed to determine constant parameters of copper as a power-law hardening material by tensile test approach. A work-hardening process is used to describe the increase of the stress level necessary to continue plastic deformation. A computer program is used to show the variation of the stress-strain relation for different values of stress hardening exponent, n and power-law hardening constant, α . Due to its close tolerances, excellent corrosion resistance and high material strength, in this analysis copper (Cu) has been selected as the material. As a power-law hardening material, Cu has been used to compute stress hardening exponent, n and power-law hardening constant, α from tensile test experiment without heat treatment and after heat treatment. A wealth of information about mechanical behavior of a material can be determined by conducting a simple tensile test in which a cylindrical specimen of a uniform cross-section is pulled until it ruptures or fractures into separate pieces. The original cross sectional area and gauge length are measured prior to conducting the test and the applied load and gauge deformation are continuously measured throughout the test. Based on the initial geometry of the sample, the engineering stress-strain behavior (stress-strain curve) can be easily generated from which numerous mechanical properties, such as the yield strength and elastic modulus, can be determined. A universal testing machine is utilized to apply the load in a continuously increasing (ramp) manner according to ASTM specifications. Finally, theoretical results are compared with these obtained from experiments where the nature of curves is found similar to each other. It is observed that there is a significant change of the value of n obtained with and without heat treatment it means the value of n should be determined for the heat treated condition of copper material for their applications in engineering fields.

1970 ◽  
Vol 185 (1) ◽  
pp. 1149-1158 ◽  
Author(s):  
K. Bitans ◽  
P. W. Whitton

Shear stress-shear strain curves for o.f.h.c. copper at room temperature have been obtained at constant shear strain rates in the range 1 to 103s-1, using thin walled tubular specimens in a flywheel type torsion testing machine. Results show that, for a given value of strain, the stress decreases when the rate of strain is increased. Moreover, the elastic portion of the stress-strain curve tends to disappear as the rate of strain is increased. It is postulated that these effects are due to the formation of adiabatic shear bands in the material when the given rate of strain is impressed rapidly enough. A special feature of the design of the testing machine used is the rapid application of the chosen strain rate.


Author(s):  
C. F. Elam ◽  
Henry Cort Harold Carpenter

The following experiments were carried out with two principal objects in view: (1) to investigate the deformation of those metals, particularly iron and steel, in which the stress-strain curve does not immediately rise at the onset of plastic distortion; (2) to determine the effect of rate of deformation on the yield and subsequent stress-strain curve. It is impossible to give an adequate summary of the literature which deals with this subject, but a bibliography is included in an appendix and some of the most important results are referred to briefly below.


2009 ◽  
Vol 37 (2) ◽  
pp. 159-174
Author(s):  
O. Ifedi ◽  
Q. M. Li ◽  
Y. B. Lu

In plasticity theory, the effective stress–strain curve of a metal is independent of the loading path. The simplest loading path to obtain the effective stress–strain curve is a uniaxial tensile test. In order to demonstrate in a plasticity laboratory that the stress–strain curve is independent of the loading path, the hydrostatic bulge test has been used to provide a balanced biaxial tensile stress state. In our plasticity laboratory we compared several different theories for the hydrostatic bulge test for the determination of the effective stress–strain curve for two representative metals, brass and aluminium alloy. Finite element analysis (FEA) was performed based on the uniaxial tension test data. It was shown that the effective stress–strain curve obtained from the biaxial tensile test (hydrostatic bulge test) had a good correlation with that obtained in the uniaxial tensile test and agreed well with the analytical and FEA results. This paper may be used to support an experimental and numerical laboratory in teaching the concepts of effective stress and strain in plasticity theory.


Author(s):  
Nguyen Duc-Toan ◽  
Banh Tien-Long ◽  
Jung Dong-Won ◽  
Yang Seung-Han ◽  
Kim Young-Suk

AbstractIn order to predict correctly stress-strain curve for tensile tests at elevated and cooling temperatures, a modification of a Johnson–Cook (J-C) model and a new method to determine (J-C) material parameters are proposed. A MATLAB tool is used to determine material parameters by fitting a curve to follow Ludwick and Voce's hardening law at various elevated temperatures. Those hardening law parameters are then utilized to determine modified (J-C) model material parameters. The modified (J-C) model shows the better prediction compared to the conventional one. An FEM tensile test simulation based on the isotropic hardening model for metal sheet at elevated temperatures was carried out via a user-material subroutine, using an explicit finite element code. The simulation results at elevated temperatures were firstly presented and then compared with the measurements. The temperature decrease of all elements due to the air cooling process was then calculated when considering the modified (J-C) model and coded to VUMAT subroutine for tensile test simulation. The modified (J-C) model showed the good comparability between the simulation results and the corresponding experiments.


Author(s):  
Kensuke Nagai ◽  
Yasuhiro Shinohara ◽  
Shinya Sakamoto ◽  
Eiji Tsuru ◽  
Hitoshi Asahi ◽  
...  

To suppress the appearance of Lu¨ders strain and to decrease yield to tensile strength ratio in the L-direction (longitudinal direction), as well as the C-direction (circumferential direction), have been more important for strain-based design. In this study, conventional UOE and ERW pipes were examined in terms of tensile properties in both directions. In the case of UOE pipes, yield point was clearly observed on the stress-strain curve in the C-direction. However, stress-strain curves in the L-direction showed the round-house type. This difference became prominent after heat treatment for the anti-corrosion. Namely, clear Lu¨ders strain appeared in the C-direction at a lower aging temperature compared with that in the L-direction. On the other hand, contrasting results were obtained in the case for ERW pipes. Thus far, it’s been thought that the difference between UOE and ERW pipe was caused by the direction of final strain during the pipe forming process. There are also differences in the occurrence of Lu¨ders strain between each grade. A stress-strain curve maintained the round-house type in X100 grade pipe after the heat treatment at 240°C for five minutes; however, X70 grade pipe showed the stress-strain curve in the L-direction with Lu¨ders strain after the heat treatment at the same temperature.


1937 ◽  
Vol 135 (1) ◽  
pp. 467-483
Author(s):  
R. J. Lean ◽  
H. Quinney

The paper contains an account of a research into the effect on metals of different speeds of fracture, using a specially designed high-speed testing machine which is described in detail. The experiments were conducted both in this machine and in a 5-ton variable-speed autographic tensile machine, on five steels, the rate of loading being varied for each. With the high-speed machine toughness, ductility, time to produce fracture, and the stress-strain curve were obtained. The results of these combined tests, given in tables and graphs, show that there is a marked increase in stress due to higher speed of testing; and also that the work required to cause fracture increases with the speed. For mild steel the stress at the initial yield point was found to be in excess of that at the maximum point, when the speed of testing was increased the ductility did not appear to suffer.


Sign in / Sign up

Export Citation Format

Share Document