scholarly journals Thermal Stresses Due to Non-Uniform Internal Heat Generation in Functionally Graded Hollow Cylinder

2021 ◽  
Vol 26 (2) ◽  
pp. 186-200
Author(s):  
P. Rani ◽  
K. Singh ◽  
R. Muwal

Abstract Thermal stresses of a functionally graded hollow thick cylinder due to non-uniform internal heat generation are studied in this paper. Analytical solutions are obtained with radially varying properties by using the theory of elasticity. Thermal stresses distribution for different values of the powers of the module of elasticity and varying power law index of heat generation are studied. The results have been computed numerically and illustrated graphically.

Author(s):  
Chuo-Jeng Huang ◽  
Kuo-Ann Yih

Abstract This study used numerical analysis to investigate the effects of nonlinear radiation and variable viscosity on free convection of a power-law nanofluid over a vertical truncated cone in porous media with Rosseland diffusion approximation considering zero nanoparticles flux and internal heat generation. The internal heat generation is of an exponential decaying form and the viscosity of the fluid is assumed to follow Reynolds viscosity model. The surface boundary conditions of vertical truncated cone is maintained at the uniform wall temperature (UWT) and the zero nanoparticle flux (ZNF) to cause the results to be more realistic and useful. The nanofluid model considered the effects of Brownian motion and thermophoresis. The nonsimilar governing equations are obtained by using a suitable coordinate transformation and then solved by Keller box method (KBM). Comparisons with previously published work obtained good agreement. Graphical and tabular presentations of numerical data for the dimensionless temperature profile and the local Nusselt number were presented for main parameters: dimensionless streamwise coordinate, thermophoresis parameter, Lewis number, radiation parameter, surface temperature parameter, viscosity parameter, power-law index of the non-Newtonian fluid, and internal heat generation coefficient. The local Nusselt number increased when the following parameters were increased: radiation parameter, surface temperature parameter, viscosity parameter, power-law index of the non-Newtonian fluid, and dimensionless streamwise coordinate. In contrast, the local Nusselt number decreased when the following parameters were increased: internal heat generation coefficient, thermophoresis parameter, and Lewis number. Besides, the physical aspects of the problem are discussed in details.


2012 ◽  
Vol 134 (6) ◽  
Author(s):  
M. Jabbari ◽  
M. Meshkini ◽  
M. R. Eslami

In this paper, the general solution of steady-state 2D nonaxisymmetric mechanical and thermal stresses and electrical and mechanical displacements of a hollow thick cylinder made of fluid-saturated functionally graded porous piezoelectric material (FGPPM) is presented. The general form of thermal and mechanical boundary conditions is considered on the inside and outside surfaces. A direct method is used to solve the heat conduction equation and the nonhomogenous system of partial differential Navier equations, using the complex Fourier series and the power law functions method. The material properties, except Poisson's ratio, are assumed to depend on the radial variable and they are expressed as power law functions along the radial direction.


2011 ◽  
Vol 264-265 ◽  
pp. 700-705 ◽  
Author(s):  
Amir Hossein Mohazzab ◽  
Mohsen Jabbari

This work studied the theoretical solution for axisymmetric steady-state mechanical and thermal stresses in hollow functionally graded spheres with respect to heat source. The material properties of the FG sphere change continuously across the thickness direction according to the power functions of radial direction. The steady-state temperature, displacements, and stresses are derived due to the general mechanical and thermal boundary conditions as function of radial and circumferential directions. The temperature and Navier equations are solved analytically, using Taylor and Legendre series. With increasing the power law indices the temperature distribution due to heat source is decreased. Circumferential stress and radial displacement due to heat source are decreased as the power law index increases.


2015 ◽  
Vol 138 (1) ◽  
Author(s):  
M. Jabbari ◽  
M. Meshkini ◽  
M. R. Eslami

In this paper, the general solution of steady-state 1D radially symmetric mechanical and thermal stresses and electrical and mechanical displacements for a hollow thick cylinder made of fluid-saturated functionally graded poro piezoelectric materials (FGPPMs) is developed. The general form of thermal and mechanical boundary conditions is considered on the inside and outside surfaces. A direct method is used to solve the heat conduction equation and nonhomogenous system of partial differential Navier equations, using complex Fourier series and power law functions method. The material properties, except the Poisson ratio, are assumed to depend on the radial variable r and they are expressed as power law functions.


Sign in / Sign up

Export Citation Format

Share Document