scholarly journals A study of securing in-vehicle communication using IPSEC protocol

2021 ◽  
Vol 72 (2) ◽  
pp. 89-98
Author(s):  
Jan Lastinec ◽  
Ladislav Hudec

Abstract Current vehicles are increasingly dependent on Electronic Control Units (ECUs) that control virtually every system of the vehicle. To enable advanced features automotive embedded systems are opening to external world, which raises security concerns. At the same time these innovative systems require more complex software and higher bandwidth for information exchange. Thanks to its bandwidth, payload size, and openness, Ethernet is a candidate technology for future in-vehicle architectures. This paper deals with design of a novel approach to secure In-vehicle Systems by taking advantage of Ethernet/IP technology and proven security mechanisms from TCP/IP model. Main goal is to design an efficient solution that meets requirements for latency without requiring high amounts of processing power and provides secure exchange of control messages. The work is mainly focused on the widespread Controller Area Network (CAN). The presented solution is based on encapsulation of CAN frames into UDP datagrams with added authenticity, integrity, and (if required) confidentiality of communication using IPsec protocol in transport mode. This creates a “secure tunnel across backbone Ethernet network in a vehicle. Next part of the paper presents extensive tests in simulation that are based on our previous experiments on hardware, in order to evaluate the characteristics of the designed security extension. The results indicate that using IPsec is a viable solution for securing in-vehicle communications.

2013 ◽  
pp. 323-342
Author(s):  
Rodrigo Lange ◽  
Rômulo Silva de Oliveira

In recent years, the automotive industry has witnessed an exponential growth in the number of vehicular embedded applications, leading to the adoption of distributed implementations for systems in the powertrain and chassis domains. The Controller Area Network (CAN) protocol has been a de facto standard for intra-vehicular communications, while the FlexRay Communication System is being promoted as the future de facto standard for network interconnections of applications related to X-by-wire systems. Due to the characteristics of CAN and FlexRay, the coexistence of both protocols in the same vehicle is expected, leading to the use of gateways to manage the information exchange between electronic control units connected to different network segments. This chapter describes the main characteristics of CAN and FlexRay protocols, surveying the literature addressing schedulability and time analysis in both FlexRay and CAN protocols. The chapter also outlines the state-of-the-art in research about gateways for intra-vehicular communication networks.


2021 ◽  
Vol 2021 ◽  
pp. 1-26
Author(s):  
Daniel Zelle ◽  
Sigrid Gürgens

Information technology has become eminent in the development of modern cars. More than 50 Electronic Control Units (ECUs) realize vehicular functions in hardware and software, ranging from engine control and infotainment to future autonomous driving systems. Not only do the connections to the outside world pose new threats, but also the in-vehicle communication between ECUs, realized by bus systems such as Controller Area Network (CAN), needs to be protected against manipulation and replay of messages. Multiple countermeasures were presented in the past making use of Message Authentication Codes and time stamps and message counters, respectively, to provide message freshness, most prominently AUTOSAR’s Secure Onboard Communication (SecOC). In this paper, we focus on the latter ones. As one aspect of this paper, using an adequate formal model and proof, we will show that the currently considered solutions exhibit deficiencies that are hard if not impossible to overcome within the scope of the respective approaches. We further present a hardware-based approach that avoids these deficiencies and formally prove its freshness properties. In addition, we show its practicability by a hardware implementation. Finally, we evaluate our approach in comparison to counter-based solutions currently being used.


2017 ◽  
Vol 26 (4) ◽  
pp. 555-576 ◽  
Author(s):  
VERONICA JOHANSSON ◽  
SURJO R. SOEKADAR ◽  
JENS CLAUSEN

Abstract:Brain–computer interfaces (BCIs) can enable communication for persons in severe paralysis including locked-in syndrome (LIS); that is, being unable to move or speak while aware. In cases of complete loss of muscle control, termed “complete locked-in syndrome,” a BCI may be the only viable solution to restore communication. However, a widespread ignorance regarding quality of life in LIS, current BCIs, and their potential as an assistive technology for persons in LIS, needlessly causes a harmful situation for this cohort. In addition to their medical condition, these persons also face social barriers often perceived as more impairing than their physical condition. Through social exclusion, stigmatization, and frequently being underestimated in their abilities, these persons are being locked out in addition to being locked-in. In this article, we (1) show how persons in LIS are being locked out, including how key issues addressed in the existing literature on ethics, LIS, and BCIs for communication, such as autonomy, quality of life, and advance directives, may reinforce these confinements; (2) show how these practices violate the United Nations Convention on the Rights of Persons with Disabilities, and suggest that we have a moral responsibility to prevent and stop this exclusion; and (3) discuss the role of BCIs for communication as one means to this end and suggest that a novel approach to BCI research is necessary to acknowledge the moral responsibility toward the end users and avoid violating the human rights of persons in LIS.


2014 ◽  
Vol 3 (3-4) ◽  
Author(s):  
Quang-Dung Ho ◽  
Gowdemy Rajalingham ◽  
Tho Le-Ngoc

Neighbor area network (NAN), also known as smart meter communication network, is one of the most important segments of smart grid communications network (SGCN). This paper studies the performance of greedy perimeter stateless routing (GPSR), a representative implementation of geographic-based routing class, in the NAN scenario and investigates the feasibility of this routing protocol in supporting SG applications. Specifically, packet transmission delay and reliability of GPSR in an IEEE 802.15.4-based wireless mesh NAN with practical system parameters are measured by simulations. The results show that, at the data rate required for conventional SG applications including smart metering, real-time pricing and demand response, the delay can always be maintained below 70 ms (in 95th-percentile perspective) while packet delivery ratio is higher than 90%. However, due to that fact that more advanced applications that require information exchange at higher rates and more stringent delays are emerging in SG, the performance of GPSR in NAN scenarios using radio technologies that can support higher loads and/or larger network scales needs to be studied.


2021 ◽  
Vol 93 (6s) ◽  
pp. 141-148
Author(s):  
Tomasz Praczyk ◽  
◽  
Tadeusz Bodnar ◽  

A swarm of autonomous underwater vehicles can be a valuable alternative for fully equipped and very expensive super-vehicles. A distributed system of tightly cooperating vehicles can be cheaper, simpler in maintenance, more reliable, more flexible and universal than traditional single-vehicle systems. However, keeping a tight formation of underwater vehicles in the condition of the sea current, unclear environment, and rare inter-vehicle communication is a very challenging problem, which requires an effective vehicle control system. The paper proposes a solution to the above-mentioned problem, which is based on neuro-evolution. Moreover, the paper also presents the first results of the proposed system.


Author(s):  
Banu Çalış Uslu ◽  
Seniye Ümit Oktay Fırat

Under uncertainty, understanding and controlling complex environments is only possible with an ability to use distributed computing by the way of information exchange between devices to be able to understand the response of the system to a particular problem. From transformation of raw data in a huge distribution of network into the meaningful information, to use the understood knowledge to make rapid decisions needs to have a network composed of smart devices. Internet of things (IoT) is a novel approach, where these smart devices can communicate with each other by using key technologies of artificial intelligence (AI) in order to make timely autonomous decisions. This emerging technical advancement and realization of horizontal and vertical integration caused the fourth stage of industrialization (Industry 4.0). The objective of this chapter is to give detailed information on both IoT based on key AI technologies and Industry 4.0. It is expected to shed light on new work to be done by providing explanations about the new areas that will emerge with this new technology.


Author(s):  
Jörg Sommer ◽  
Elias A. Doumith ◽  
Andreas Reifert

During past decades, Ethernet progressively became the most widely used Local Area Network (LAN) technology. Apart from LAN installations, Ethernet also became attractive for other application areas such as industrial control, automotive, and avionics. In traditional LAN design, the objective is to minimize the network deployment cost. However, in embedded networks, additional constraints and ambient conditions add to the complexity of the problem. In this paper, the authors propose a Simulated Annealing (SA) algorithm to optimize the physical topology of an embedded Ethernet network. The various constraints and ambient conditions are modeled by a cost map. For networks with small number of nodes and/or switches, the authors were able to find the optimal solutions using adapted algorithms. These solutions will serve as a lower bound for the solutions obtained via the SA algorithm. However, the adapted algorithms are time consuming and application specific. The paper shows that the SA algorithm can be applied in all cases and finds (near-) optimal solutions.


Author(s):  
A. Kuppuswami

Wide area network (WAN) offers advantages like providing myriad services available on globally diversified computers with reasonably simple process. The ability to dynamically create networks offers the processing powers of various processors at our command. With the advent of protocols like SOAP and Web services, the consumption of services are more organized. In spite of various advances in communication techniques, the consumption of services through mobile gadgets is still only at the research level. The major impedances in implementing such systems on a mobile network are the latency factor, abrupt disconnection in service, lower bandwidth and minimal processing power. The mobile agent’s paradigm proves to be an effective solution to various issues raised. It has received serious attention in the last decade and several systems based on this paradigm have been proposed and built. All such systems have been designed for a static network, where the service providers and the requestors are connected to the server on a permanent basis. This chapter presents a new framework of managing the mobile environment and the participating nodes with active intelligent migration. The functioning of the mobile agents in such a scenario is also presented.


Sign in / Sign up

Export Citation Format

Share Document