scholarly journals Concise review: Harnessing iPSC-derived cells for ischemic heart disease treatment

2020 ◽  
Vol 8 (1) ◽  
pp. 20-25
Author(s):  
Bin Duan

AbstractIschemic heart disease (IHD) is one of the most common cardiovascular diseases and is the leading cause of death worldwide. Stem cell therapy is a promising strategy to promote cardiac regeneration and myocardial function recovery. Recently, the generation of human induced pluripotent cells (hiPSCs) and their differentiation into cardiomyocytes and vascular cells offer an unprecedented opportunity for the IHD treatment. This review briefly summarizes hiPSCs and their differentiation, and presents the recent advances in hiPSC injection, engineered cardiac patch fabrication, and the application of hiPSC derived extracellular vesicle. Current challenges and further perspectives are also discussed to understand current risks and concerns, identify potential solutions, and direct future clinical trials and applications.

2016 ◽  
Vol 2016 ◽  
pp. 1-16 ◽  
Author(s):  
Maximiliano I. Schaun ◽  
Bruna Eibel ◽  
Melissa Kristocheck ◽  
Grasiele Sausen ◽  
Luana Machado ◽  
...  

The incidence of severe ischemic heart disease caused by coronary obstruction has progressively increased. Alternative forms of treatment have been studied in an attempt to regenerate myocardial tissue, induce angiogenesis, and improve clinical conditions. In this context, cell therapy has emerged as a promising alternative using cells with regenerative potential, focusing on the release of paracrine and autocrine factors that contribute to cell survival, angiogenesis, and tissue remodeling. Evidence of the safety, feasibility, and potential effectiveness of cell therapy has emerged from several clinical trials using different lineages of adult stem cells. The clinical benefit, however, is not yet well established. In this review, we discuss the therapeutic potential of cell therapy in terms of regenerative and angiogenic capacity after myocardial ischemia. In addition, we addressed nonpharmacological interventions that may influence this therapeutic practice, such as diet and physical training. This review brings together current data on pharmacological and nonpharmacological approaches to improve cell homing and cardiac repair.


2017 ◽  
Vol 313 (3) ◽  
pp. H508-H523 ◽  
Author(s):  
Gui-Hao Chen ◽  
Jun Xu ◽  
Yue-Jin Yang

Ischemic heart disease(IHD) is the leading cause of death worldwide. Despite the development of continuously improving therapeutic strategies, morbidity and mortality of patients with IHD remain relatively high. Exosomes are a subpopulation of vesicles that are universally recognized as major mediators in intercellular communication. Numerous preclinical studies have shown that these tiny vesicles were protective in IHD, through such actions as alleviating myocardial ischemia-reperfusion injury, promoting angiogenesis, inhibiting fibrosis, and facilitating cardiac regeneration. Our review focused on these beneficial exosome-mediated processes. In addition, we discuss in detail how to fully exploit the therapeutic potentials of exosomes in the field of IHD. Topics include identifying robust sources of exosomes, loading protective agents into exosomes, developing heart-specific exosomes, optimizing isolation methods, and translating the cardioprotective effects of exosomes into clinical practice. Finally, both the advantages and disadvantages of utilizing exosomes in clinical settings are addressed.


Sign in / Sign up

Export Citation Format

Share Document