cardiac patch
Recently Published Documents


TOTAL DOCUMENTS

118
(FIVE YEARS 48)

H-INDEX

26
(FIVE YEARS 6)

2021 ◽  
pp. 152808372110542
Author(s):  
Saravana Kumar Jaganathan ◽  
Mohan Prasath Mani ◽  
Ahmad Fauzi bin Ismail ◽  
Ahmad Zahran Mohd Khudzari ◽  
Ahmad Athif Mohd Faudzi

The cardiac patch provides appropriate physicochemical properties and mechanical strength for the regeneration of damaged heart tissues. In this work, for the first-time, beetroot (BR) is blended with cerium oxide (CeO2) to produce nanofibrous polyurethane (PU) composite patch using electrospinning. The objective of this work is to fabricate the composite and examine its feasibility for cardiac patch applications. Morphological analysis revealed a dramatic reduction of fiber diameter of PU/BR (233 ± 175 nm) and PU/BR/CeO2 (331 ± 176 mm) compared to the pristine PU (994 ± 113 mm). Fourier transform infrared analysis (FTIR) analysis indicated functional peak intensities of the newly formed composite PU/BR and PU/BR/CeO2 were not similar to PU. The addition of beetroot rendered PU/BR hydrophilic (86° ± 2), whereas PU/BR/CeO2exhibited hydrophobic nature (99° ± 3). Atomic force microscopy (AFM) analysis depicted the reduced surface roughness of the PU/BR (312 ± 12 nm) and PU/BR/CeO2 (390 ± 125 nm) than the pristine PU (854 ± 32 nm). The incorporation of beetroot and CeO2 into PU enhanced the tensile strength compared with the pristine PU. The blood clotting time of PU/BR (APTT-204 ± 3 s and PT-103 ± 2 s) and PU/BR/CeO2 (APTT-205 ± 3 s and PT-105 ± 2s) were delayed significantly than the pristine PU(APTT-176 ± 2 s and PT-94 ± 2 s) as revealed in the coagulation study. Further, hemolysis assay showed the less toxic nature of the fabricated composites than the pristine PU. Hence, it can be inferred that the advanced physicochemical and blood compatible properties of electrospun PU/BR and PU/BR/CeO2 nanocomposite can be engineered successfully for cardiac patch applications.


2021 ◽  
Vol 8 (12) ◽  
pp. 172
Author(s):  
Olga Brazhkina ◽  
Jeong Hun Park ◽  
Hyun-Ji Park ◽  
Sruti Bheri ◽  
Joshua T. Maxwell ◽  
...  

Myocardial infarction is one of the largest contributors to cardiovascular disease and reduces the ability of the heart to pump blood. One promising therapeutic approach to address the diminished function is the use of cardiac patches composed of biomaterial substrates and cardiac cells. These patches can be enhanced with the application of an auxetic design, which has a negative Poisson’s ratio and can be modified to suit the mechanics of the infarct and surrounding cardiac tissue. Here, we examined multiple auxetic models (orthogonal missing rib and re-entrant honeycomb in two orientations) with tunable mechanical properties as a cardiac patch substrate. Further, we demonstrated that 3D printing based auxetic cardiac patches of varying thicknesses (0.2, 0.4, and 0.6 mm) composed of polycaprolactone and gelatin methacrylate can support induced pluripotent stem cell-derived cardiomyocyte function for 14-day culture. Taken together, this work shows the potential of cellularized auxetic cardiac patches as a suitable tissue engineering approach to treating cardiovascular disease.


2021 ◽  
Author(s):  
David Patrocinio Caballero ◽  
Jorge Loureiro ◽  
Victor P. Galvan Chacon ◽  
Maximiano P. Ribeiro ◽  
Sonia Miguel ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
Jorge Loureiro ◽  
Sonia P. Miguel ◽  
Victor P. Galvan-Chacon ◽  
David Patrocinio ◽  
Francisco M. Sanchez-Margallo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document