scholarly journals Analysis of future climate scenarios and their impact on agriculture in eastern Arkansas, United States

2018 ◽  
Vol 37 (1) ◽  
pp. 97-112 ◽  
Author(s):  
John W. Magugu ◽  
Song Feng ◽  
Qiuqiong Huang ◽  
Yongjun Zhang ◽  
Grant H. West

Abstract Impact of climate change on crop growth is dynamic and difficult to quantify due to heterogeneity of the associated effects and their interactions within the Earth system. The main objective of this study is to establish how future climate change might affect agriculture, through an assessment of temperature and precipitation driven parameters. These include percentage number of rainy days with extreme precipitation, percentage of extreme precipitation relative to wet days, first fall frost days, last spring frost days, growing degree days, growing season length and the total precipitation. Results show modest increase in total precipitation with a slight increase in extreme precipitation, representing up to 2.2% increase by 2060 under representative concentration pathway (RCP 8.5) scenario. There would be late first fall frost days, early last spring frost days and increased growing season length by up to 2 weeks in 2060. The growing degree days are projected to increase under all scenarios for all crops, with cotton showing the largest increase of up to 37% relative to the baseline period.

2020 ◽  
Author(s):  
Nuzba Shaheen ◽  
Ambreen Jahandad ◽  
Muhammad Arif Goheer ◽  
Qurat-ul Ain Ahmad

Climate change has become a global phenomenon having severe ramifications on socio-economic sectors such as agriculture, water resources, environment and health. The effects of changing climate are much more prominent on developing economies as compared to the implications on well-developed industrial powers. Pakistan is one of the struggling agricultural economies confronting the issues of food insecurity as a consequence of profound climatic conditions. Notable changes in climatic factors such as temperature can have a direct effect on Growing Degree Days (GDD) and may alter the growing season length (GSL). Growing season length is an important factor in ensuring that each crop developmental stage has a sufficient period for the transition to the next developmental stage. Lengthening or shortening of GSL can have dire threats to crop development and ultimately, production. This study has been conducted to assess the changes in GSL in response to the variability in daily maximum and minimum temperatures with a base temperature of 5°C across Northern, Central and Southern Pakistan. RCP 4.5 and 8.5 have shown an increase of 2°C and 5.4°C in minimum and maximum temperatures, respectively.


2012 ◽  
Vol 51 (11) ◽  
pp. 2060-2073 ◽  
Author(s):  
Kari E. Skaggs ◽  
Suat Irmak

AbstractAir temperature influences agricultural practices and production outcomes, making detailed quantifications of temperature changes necessary for potential positive and negative effects on agricultural management practices to be exploited or mitigated. Temperature trends of long-term data for five agricultural locations, ranging from the subhumid eastern to the semiarid western parts of Nebraska, were studied to determine local temperature changes and their potential effects on agricultural practices. The study quantified trends in annual and monthly average maximum and minimum air temperature (Tmax and Tmin), daily temperature range (DTR), total growing degree-days, extreme temperatures, growing‐season dates and lengths, and temperature distributions for five heavily agricultural areas of Nebraska: Alliance, Central City, Culbertson, Fremont, and Hastings. July and August were the months with the greatest decreases in Tmax for the central part of Nebraska—Culbertson, Hastings, and Central City. Alliance, Culbertson, and Fremont had year-round decreases in DTR. Central City and Hastings experienced growing‐season decreases in DTR. Increases in growing‐season length occurred at rates of 14.3, 16.7, and 11.9 days century−1 for Alliance, Central City, and Fremont, respectively. At Hastings, moderately earlier last spring frost (LS) at a rate of 6.6 days century−1 was offset by an earlier (2.7 days century−1) first fall frost (FF), resulting in only a 3.8 days century−1 longer growing season. There were only slight changes in LS and FF dates of around 2 days earlier and 1 day later per century, respectively, for Culbertson.


2011 ◽  
Vol 15 (33) ◽  
pp. 1-17 ◽  
Author(s):  
Daniel E. Christiansen ◽  
Steven L. Markstrom ◽  
Lauren E. Hay

AbstractUnderstanding the effects of climate change on the vegetative growing season is key to quantifying future hydrologic water budget conditions. The U.S. Geological Survey modeled changes in future growing season length at 14 basins across 11 states. Simulations for each basin were generated using five general circulation models with three emission scenarios as inputs to the Precipitation-Runoff Modeling System (PRMS). PRMS is a deterministic, distributed-parameter, watershed model developed to simulate the effects of various combinations of precipitation, climate, and land use on watershed response. PRMS was modified to include a growing season calculation in this study. The growing season was examined for trends in the total length (annual), as well as changes in the timing of onset (spring) and the end (fall) of the growing season. The results showed an increase in the annual growing season length in all 14 basins, averaging 27–47 days for the three emission scenarios. The change in the spring and fall growing season onset and end varied across the 14 basins, with larger increases in the total length of the growing season occurring in the mountainous regions and smaller increases occurring in the Midwest, Northeast, and Southeast regions. The Clear Creek basin, 1 of the 14 basins in this study, was evaluated to examine the growing season length determined by emission scenario, as compared to a growing season length fixed baseline condition. The Clear Creek basin showed substantial variation in hydrologic responses, including streamflow, as a result of growing season length determined by emission scenario.


2021 ◽  
Vol 13 (22) ◽  
pp. 12713
Author(s):  
Nancy Fresco ◽  
Alec Bennett ◽  
Peter Bieniek ◽  
Carolyn Rosner

Ongoing climate change and associated food security concerns are pressing issues globally, and are of particular concern in the far north where warming is accelerated and markets are remote. The objective of this research was to model current and projected climate conditions pertinent to gardeners and farmers in Alaska. Research commenced with information-sharing between local agriculturalists and climate modelers to determine primary questions, available data, and effective strategies. Four variables were selected: summer season length, growing degree days, temperature of the coldest winter day, and plant hardiness zone. In addition, peonies were selected as a case study. Each variable was modeled using regional projected climate data downscaled using the delta method, followed by extraction of key variables (e.g., mean coldest winter day for a given decade). An online interface was developed to allow diverse users to access, manipulate, view, download, and understand the data. Interpretive text and a summary of the case study explained all of the methods and outcomes. The results showed marked projected increases in summer season length and growing degree days coupled with seasonal shifts and warmer winter temperatures, suggesting that agriculture in Alaska is undergoing and will continue to undergo profound change. This presents opportunities and challenges for farmers and gardeners.


2013 ◽  
Vol 41 (4) ◽  
pp. 773-783 ◽  
Author(s):  
Chris Kollas ◽  
Christian Körner ◽  
Christophe F. Randin

2022 ◽  
Author(s):  
Rybalko Evgeniy ◽  
Ostroukhova Elena ◽  
Baranova Natalia ◽  
Peskova Irina ◽  
Borisova Victoria

This research focused on examining the interrelationships between the natural conditions for growing grapes, as well as the quantitative and qualitative characteristics of the harvest. These are important criteria for the scientifically grounded selection of a territory for planting a vineyard, selecting varieties and determining the use of the resulting products. The characteristics of six model vineyards of the Aligote cultivar, located in various natural zones and viticultural regions of the Crimea, were analyzed. The values of climatic indicators were calculated, including the growing degree days above 10∘C (∑Т ∘С10), growing degree days above 20∘C (∑Т ∘С20), Huglin index, Winkler index, average growing season temperature, average September temperature, ratio ∑Т ∘С20/∑Т ∘С10,total precipitation during the year, total precipitation during the growing season, total precipitation in September, and Selyaninov hydrothermal coefficient. These were calculated usinggeoinformation and mathematical modeling for the locations of the analyzed vineyards. The content of the primary metabolites (total sugars, titrated acids and calculated indicators based on them) and secondary metabolites (phenolic components, oxidase activity) of grapes from the model vineyards were analyzed. The range of variation in the studied indicators within the analyzed territories was calculated, and the nature and magnitude of the relationships between the indicators were revealed. A cluster analysis of the analyzed vineyards was carried out and clusters were distinguished according to the degree of similarity in climatic parameters, as well as the content of the primary and secondary metabolites of the grapes. Keywords: grapes, agroecological factors, primary and secondary grape metabolites, ampeloecological zoning, terroir


2020 ◽  
Author(s):  
Frederik Baumgarten ◽  
Yann Vitasse ◽  
Arthur Gessler

<p><strong>Abstract</strong></p><p>Leaf-out timing is crucial for the fitness of deciduous trees inhabiting temperate and higher latitudes. Optimal leaf-out allows minimizing freezing damages and herbivory pressure while maximizing growing season length and resource uptake in order to increase their competitiveness. However only a few attempts have been made to classify species according to their strategy along this trade-off.</p><p>Using climate chambers, we artificially provoked 5 different flushing dates that span the maximum possible range of natural occurring flushing dates of 4 tree species (Prunus avium, Carpinus betulus, Fagus sylvatica and Quercus robur). Shortly after each of the five leaf-out timings, 12 saplings per species were exposed to a frost treatment that is expected to either kill all leaves (LT<sub>100</sub>, i.e. lethal temperature killing 100% of the leaves) or to partially damage them. These temperature thresholds have been adapted to each species according to their freezing resistance found in the literature. A subset of 12 indviduals per species served as a control and were not subjected to a frost treatment. Shortly after the frost treatment, all saplings were planted outside in the ground under a shading net (~-60% of light transmission) simulating below canopy conditions at the WSL research facility near Zürich.</p><p>Growth parameters (diameter, height) and recovery state (percentage of greenness compared to the control) were regularly measured during the consecutive growing season as well as the leaf coloring in autumn 2019. Preliminary results suggest that cherry and oak have recovered more than 80% by the end of the growing season, whereas beech and hornbeam only recovered about 50%. Oak was the fastest species to recover, already reaching 80% three weeks after the frost treatment. Our results allow to better quantify to what extend damaging spring frost reduces competitiveness for resources (light, nutrients) among species.</p>


Sign in / Sign up

Export Citation Format

Share Document