scholarly journals Mapping vegetation communities of the Karkonosze National Park using APEX hyperspectral data and Support Vector Machines

2014 ◽  
Vol 18 (2) ◽  
pp. 23-29 ◽  
Author(s):  
Adriana Marcinkowska ◽  
Bogdan Zagajewski ◽  
Adrian Ochtyra ◽  
Anna Jarocińska ◽  
Edwin Raczko ◽  
...  

Abstract This research aims to discover the potential of hyperspectral remote sensing data for mapping mountain vegetation ecosystems. First, the importance of mountain ecosystems to the global system should be stressed due to mountainous ecosystems forming a very sensitive indicator of global climate change. Furthermore, a variety of biotic and abiotic factors influence the spatial distribution of vegetation in the mountains, producing a diverse mosaic leading to high biodiversity. The research area covers the Szrenica Mount region on the border between Poland and the Czech Republic - the most important part of the Western Karkonosze and one of the main areas in the Karkonosze National Park (M&B Reserve of the UNESCO). The APEX hyperspectral data that was classified in this study was acquired on 10th September 2012 by the German Aerospace Center (DLR) in the framework of the EUFAR HyMountEcos project. This airborne scanner is a 288-channel imaging spectrometer operating in the wavelength range 0.4-2.5 μm. For reference patterns of forest and non-forest vegetation, maps (provided by the Polish Karkonosze National Park) were chosen. Terrain recognition was based on field walks with a Trimble GeoXT GPS receiver. It allowed test and validation dominant polygons of 15 classes of vegetation communities to be selected, which were used in the Support Vector Machines (SVM) classification. The SVM classifier is a type of machine used for pattern recognition. The result is a post classification map with statistics (total, user, producer accuracies, kappa coefficient and error matrix). Assessment of the statistics shows that almost all the classes were properly recognised, excluding the fern community. The overall classification accuracy is 79.13% and the kappa coefficient is 0.77. This shows that hyperspectral images and remote sensing methods can be support tools for the identification of the dominant plant communities of mountain areas.

2003 ◽  
Vol 15 (7) ◽  
pp. 1667-1689 ◽  
Author(s):  
S. Sathiya Keerthi ◽  
Chih-Jen Lin

Support vector machines (SVMs) with the gaussian (RBF) kernel have been popular for practical use. Model selection in this class of SVMs involves two hyper parameters: the penalty parameter C and the kernel width σ. This letter analyzes the behavior of the SVM classifier when these hyper parameters take very small or very large values. Our results help in understanding the hyperparameter space that leads to an efficient heuristic method of searching for hyperparameter values with small generalization errors. The analysis also indicates that if complete model selection using the gaussian kernel has been conducted, there is no need to consider linear SVM.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Hao Jiang ◽  
Wai-Ki Ching

High dimensional bioinformatics data sets provide an excellent and challenging research problem in machine learning area. In particular, DNA microarrays generated gene expression data are of high dimension with significant level of noise. Supervised kernel learning with an SVM classifier was successfully applied in biomedical diagnosis such as discriminating different kinds of tumor tissues. Correlation Kernel has been recently applied to classification problems with Support Vector Machines (SVMs). In this paper, we develop a novel and parsimonious positive semidefinite kernel. The proposed kernel is shown experimentally to have better performance when compared to the usual correlation kernel. In addition, we propose a new kernel based on the correlation matrix incorporating techniques dealing with indefinite kernel. The resulting kernel is shown to be positive semidefinite and it exhibits superior performance to the two kernels mentioned above. We then apply the proposed method to some cancer data in discriminating different tumor tissues, providing information for diagnosis of diseases. Numerical experiments indicate that our method outperforms the existing methods such as the decision tree method and KNN method.


2011 ◽  
Vol 54 (3) ◽  
pp. 272-281 ◽  
Author(s):  
XiaoHua Yang ◽  
JingFeng Huang ◽  
YaoPing Wu ◽  
JianWen Wang ◽  
Pei Wang ◽  
...  

2013 ◽  
Vol 333-335 ◽  
pp. 1080-1084
Author(s):  
Zhang Fei ◽  
Ye Xi

In this paper, we will propose a novel classification method of high-resolution SAR using local autocorrelation and Support Vector Machines (SVM) classifier. The commonly applied spatial autocorrelation indexes, called Moran's Index; Geary's Index, Getis's Index, will be used to depict the feature of the land-cover. Then, the SVM based on these indexes will be applied as the high-resolution SAR classifier. A Cosmo-SkyMed scene in ChengDu city, China is used for our experiment. It is shown that the method proposed can lead to good classification accuracy.


2010 ◽  
Vol 1 (4) ◽  
pp. 293-307 ◽  
Author(s):  
Xavier Ceamanos ◽  
Björn Waske ◽  
Jón Atli Benediktsson ◽  
Jocelyn Chanussot ◽  
Mathieu Fauvel ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document