scholarly journals Processing of 3D Weather Radar Data with Application for Assimilation in the NWP Model

2014 ◽  
Vol 18 (3) ◽  
pp. 31-39 ◽  
Author(s):  
Katarzyna Ośródka ◽  
Jan Szturc ◽  
Bogumił Jakubiak ◽  
Anna Jurczyk

Abstract The paper is focused on the processing of 3D weather radar data to minimize the impact of a number of errors from different sources, both meteorological and non-meteorological. The data is also quantitatively characterized in terms of its quality. A set of dedicated algorithms based on analysis of the reflectivity field pattern is described. All the developed algorithms were tested on data from the Polish radar network POLRAD. Quality control plays a key role in avoiding the introduction of incorrect information into applications using radar data. One of the quality control methods is radar data assimilation in numerical weather prediction models to estimate initial conditions of the atmosphere. The study shows an experiment with quality controlled radar data assimilation in the COAMPS model using the ensemble Kalman filter technique. The analysis proved the potential of radar data for such applications; however, further investigations will be indispensable.

2020 ◽  
Vol 10 (16) ◽  
pp. 5493 ◽  
Author(s):  
Jingnan Wang ◽  
Lifeng Zhang ◽  
Jiping Guan ◽  
Mingyang Zhang

Satellite and radar observations represent two fundamentally different remote sensing observation types, providing independent information for numerical weather prediction (NWP). Because the individual impact on improving forecast has previously been examined, combining these two resources of data potentially enhances the performance of weather forecast. In this study, satellite radiance, radar radial velocity and reflectivity are simultaneously assimilated with the Proper Orthogonal Decomposition (POD)-based ensemble four-dimensional variational (4DVar) assimilation method (referred to as POD-4DEnVar). The impact is evaluated on continuous severe rainfall processes occurred from June to July in 2016 and 2017. Results show that combined assimilation of satellite and radar data with POD-4DEnVar has the potential to improve weather forecast. Averaged over 22 forecasts, RMSEs indicate that though the forecast results are sensitive to different variables, generally the improvement is found in different pressure levels with assimilation. The precipitation skill scores are generally increased when assimilation is carried out. A case study is also examined to figure out the contributions to forecast improvement. Better intensity and distribution of precipitation forecast is found in the accumulated rainfall evolution with POD-4DEnVar assimilation. These improvements are attributed to the local changes in moisture, temperature and wind field. In addition, with radar data assimilation, the initial rainwater and cloud water conditions are changed directly. Both experiments can simulate the strong hydrometeor in the precipitation area, but assimilation spins up faster, strengthening the initial intensity of the heavy rainfall. Generally, the combined assimilation of satellite and radar data results in better rainfall forecast than without data assimilation.


2018 ◽  
Vol 33 (2) ◽  
pp. 599-607 ◽  
Author(s):  
John R. Lawson ◽  
John S. Kain ◽  
Nusrat Yussouf ◽  
David C. Dowell ◽  
Dustan M. Wheatley ◽  
...  

Abstract The Warn-on-Forecast (WoF) program, driven by advanced data assimilation and ensemble design of numerical weather prediction (NWP) systems, seeks to advance 0–3-h NWP to aid National Weather Service warnings for thunderstorm-induced hazards. An early prototype of the WoF prediction system is the National Severe Storms Laboratory (NSSL) Experimental WoF System for ensembles (NEWSe), which comprises 36 ensemble members with varied initial conditions and parameterization suites. In the present study, real-time 3-h quantitative precipitation forecasts (QPFs) during spring 2016 from NEWSe members are compared against those from two real-time deterministic systems: the operational High Resolution Rapid Refresh (HRRR, version 1) and an upgraded, experimental configuration of the HRRR. All three model systems were run at 3-km horizontal grid spacing and differ in initialization, particularly in the radar data assimilation methods. It is the impact of this difference that is evaluated herein using both traditional and scale-aware verification schemes. NEWSe, evaluated deterministically for each member, shows marked improvement over the two HRRR versions for 0–3-h QPFs, especially at higher thresholds and smaller spatial scales. This improvement diminishes with forecast lead time. The experimental HRRR model, which became operational as HRRR version 2 in August 2016, also provides added skill over HRRR version 1.


2014 ◽  
Vol 21 (5) ◽  
pp. 1027-1041 ◽  
Author(s):  
K. Apodaca ◽  
M. Zupanski ◽  
M. DeMaria ◽  
J. A. Knaff ◽  
L. D. Grasso

Abstract. Lightning measurements from the Geostationary Lightning Mapper (GLM) that will be aboard the Geostationary Operational Environmental Satellite – R Series will bring new information that can have the potential for improving the initialization of numerical weather prediction models by assisting in the detection of clouds and convection through data assimilation. In this study we focus on investigating the utility of lightning observations in mesoscale and regional applications suitable for current operational environments, in which convection cannot be explicitly resolved. Therefore, we examine the impact of lightning observations on storm environment. Preliminary steps in developing a lightning data assimilation capability suitable for mesoscale modeling are presented in this paper. World Wide Lightning Location Network (WWLLN) data was utilized as a proxy for GLM measurements and was assimilated with the Maximum Likelihood Ensemble Filter, interfaced with the Nonhydrostatic Mesoscale Model core of the Weather Research and Forecasting system (WRF-NMM). In order to test this methodology, regional data assimilation experiments were conducted. Results indicate that lightning data assimilation had a positive impact on the following: information content, influencing several dynamical variables in the model (e.g., moisture, temperature, and winds), and improving initial conditions during several data assimilation cycles. However, the 6 h forecast after the assimilation did not show a clear improvement in terms of root mean square (RMS) errors.


2014 ◽  
Vol 1 (1) ◽  
pp. 917-952
Author(s):  
K. Apodaca ◽  
M. Zupanski ◽  
M. DeMaria ◽  
J. A. Knaff ◽  
L. D. Grasso

Abstract. Lightning measurements from the Geostationary Lightning Mapper (GLM) that will be aboard the Goestationary Operational Environmental Satellite – R Series will bring new information that can have the potential for improving the initialization of numerical weather prediction models by assisting in the detection of clouds and convection through data assimilation. In this study we focus on investigating the utility of lightning observations in mesoscale and regional applications suitable for current operational environments, in which convection cannot be explicitly resolved. Therefore, we examine the impact of lightning observations on storm environment. Preliminary steps in developing a lightning data assimilation capability suitable for mesoscale modeling are presented in this paper. World Wide Lightning Location Network (WWLLN) data was utilized as a proxy for GLM measurements and was assimilated with the Maximum Likelihood Ensemble Filter, interfaced with the Nonhydrostatic Mesoscale Model core of the Weather Research and Forecasting system (WRF-NMM). In order to test this methodology, regional data assimilation experiments were conducted. Results indicate that lightning data assimilation had a positive impact on the following: information content, influencing several dynamical variables in the model (e.g., moisture, temperature, and winds), improving initial conditions, and partially improving WRF-NMM forecasts during several data assimilation cycles.


2017 ◽  
Vol 145 (2) ◽  
pp. 683-708 ◽  
Author(s):  
Xuanli Li ◽  
John R. Mecikalski ◽  
Derek Posselt

In this study, an ice-phase microphysics forward model has been developed for the Weather Research and Forecasting (WRF) Model three-dimensional variational data assimilation (WRF 3D-Var) system. Radar forward operators for reflectivity and the polarimetric variable, specific differential phase ( KDP), have been built into the ice-phase WRF 3D-Var package to allow modifications in liquid (cloud water and rain) and solid water (cloud ice and snow) fields through data assimilation. Experiments have been conducted to assimilate reflectivity and radial velocity observations collected by the Weather Surveillance Radar-1988 Doppler (WSR-88D) in Hytop, Alabama, for a mesoscale convective system (MCS) on 15 March 2008. Numerical results have been examined to assess the impact of the WSR-88D data using the ice-phase WRF 3D-Var radar data assimilation package. The main goals are to first demonstrate radar data assimilation with an ice-phase microphysics forward model and second to improve understanding on how to enhance the utilization of radar data in numerical weather prediction. Results showed that the assimilation of reflectivity and radial velocity data using the ice-phase system provided significant improvement especially in the mid- to upper troposphere. The improved initial conditions led to apparent improvement in the short-term precipitation forecast of the MCS. An additional experiment has been conducted to explore the assimilation of KDP data collected by the Advanced Radar for Meteorological and Operational Research (ARMOR). Results showed that KDP data have been successfully assimilated using the ice-phase 3D-Var package. A positive impact of the KDP data has been found on rainwater in the lower troposphere and snow in the mid- to upper troposphere.


2006 ◽  
Vol 21 (4) ◽  
pp. 502-522 ◽  
Author(s):  
Qingyun Zhao ◽  
John Cook ◽  
Qin Xu ◽  
Paul R. Harasti

Abstract A high-resolution radar data assimilation system is presented for high-resolution numerical weather prediction models. The system is under development at the Naval Research Laboratory for the Navy’s Coupled Ocean–Atmosphere Mesoscale Prediction System. A variational approach is used to retrieve three-dimensional dynamical fields of atmospheric conditions from multiple-Doppler radar observations of radial velocity within a limited area. The methodology is described along with a preliminary evaluation of the impact of assimilated radar data on model forecasts using a case study of a squall line that occurred along the east coast of the United States on 9 May 2003. Results from the experiments show a significant impact from the assimilated radar radial velocity data on the model forecast of not just dynamical but also hydrological fields at all model levels for the duration of the storm. A verification system has also been developed to assess the radar data assimilation impact, and the results show improvements in the three-dimensional wind forecasts but relatively small changes in the prediction of storm locations. This study highlights the need to develop a continuous radar data assimilation system to maximize the impact of the data.


2019 ◽  
Vol 51 (3) ◽  
pp. 273 ◽  
Author(s):  
Miranti Indri Hastuti ◽  
Jaka Anugrah Ivanda Paski ◽  
Fatkhuroyan Fatkhuroyan

Data assimilation is one of method to improve initial atmospheric conditions data in numerical weather prediction. The assimilation of weather radar data that has quite extensive and tight data is considered to be able to improve the quality of weather prediction and analysis. This study aims to investigate the effect of assimilation of Doppler weather radar data in Weather Research Forecasting (WRF) numerical model for the prediction of heavy rain events in the Jabodetabek area with dates representing four seasons respectively on 20 February 2017, 3 April 2017, 13 June 2017, and 9 November 2017. For this purpose, the reflectivity (Z) and radial velocity (V) data from Plan Position Indicator (PPI) product and reflectivity (Z) data from Constant Altitude PPI (CAPPI) product were assimilated using WRFDA (WRF Data Assimilation) numerical model with 3DVar (The Three Dimensional Variational) system. The output of radar data assimilation and without assimilation of the numerical model of WRF is verified by spatial with GSMaP data and by point with precipitation observation data. In general, WRF radar assimilation provides a better simulation of spatial and point rain events compared to the WRF model without assimilation which is improvements of rain prediction from WRF radar data assimilation would be more visible in areas close to radar sources and not echo-blocked from fixed objects, and more visible during the rainy season


2007 ◽  
Vol 135 (3) ◽  
pp. 1090-1109 ◽  
Author(s):  
Jordan C. Alpert ◽  
V. Krishna Kumar

Abstract The spatial and temporal densities of Weather Surveillance Radar-1988 Doppler (WSR-88D) raw radar radial wind represent a rich source of high-resolution observations for initializing numerical weather prediction models. A characteristic of these observations is the presence of a significant degree of redundant information imposing a burden on an operational assimilation system. Potential improvement in data assimilation efficiency can be achieved by constructing averages, called super-obs. In the past, transmission of the radar radial wind from each radar site to a central site was confined to data feeds that filter the resolution and degrade the precision. At the central site, super-obs were constructed from this data feed and called level-3 super-obs. However, the precision and information content of the radial wind can be improved if data at each radar site are directly utilized at the highest resolution and precision found at the WSR-88D radar and then transmitted to a central site for processing in assimilation systems. In addition, with data compression from using super-obs, the volume of data is reduced, allowing quality control information to be included in the data transmission. The super-ob product from each WSR-88D radar site is called level-2.5 super-obs. Parallel, operational runs and case studies of the impact of the level-2.5 radar radial wind super-ob on the NCEP operational 12-km Eta Data Assimilation System (EDAS) and forecast system are compared with Next-Generation Weather Radar level-3 radial wind super-obs, which are spatially filtered and delivered at reduced precision. From the cases studied, it is shown that the level-3 super-obs make little or no impact on the Eta data analysis and subsequent forecasts. The assimilation of the level-2.5 super-ob product in the EDAS and forecast system shows improved precipitation threat scores as well as reduction in RMS and bias height errors, particularly in the upper troposphere. In the few cases studied, the predicted mesoscale precipitation patterns benefit from the level-2.5 super-obs, and more so when greater weight is given to these high-resolution/precision observations. Direct transmission of raw (designated as level 2) radar data to a central site and its use are now imminent, but this study shows that the level-2.5 super-ob product can be used as an operational benchmark to compare with new quality control and assimilation schemes.


2018 ◽  
Vol 33 (1) ◽  
pp. 71-88 ◽  
Author(s):  
Shibo Gao ◽  
Juanzhen Sun ◽  
Jinzhong Min ◽  
Ying Zhang ◽  
Zhuming Ying

Abstract Radar reflectivity observations contain valuable information on precipitation and have been assimilated into numerical weather prediction models for improved microphysics initialization. However, low-reflectivity (or so-called no rain) echoes have often been ignored or not effectively used in radar data assimilation schemes. In this paper, a scheme to assimilate no-rain radar observations is described within the framework of the Weather Research and Forecasting Model’s three-dimensional variational data assimilation (3DVar) system, and its impact on precipitation forecasts is demonstrated. The key feature of the scheme is a neighborhood-based approach to adjusting water vapor when a grid point is deemed as no rain. The performance of the scheme is first examined using a severe convective case in the Front Range of the Colorado Rocky Mountains and then verified by running the 3DVar system in the same region, with and without the no-rain assimilation scheme for 68 days and 3-hourly rapid update cycles. It is shown that the no-rain data assimilation method reduces the bias and false alarm ratio of precipitation over its counterpart without that assimilation. The no-rain assimilation also improved humidity, temperature, and wind fields, with the largest error reduction in the water vapor field, both near the surface and at upper levels. It is also shown that the advantage of the scheme is in its ability to conserve total water content in cycled radar data assimilation, which cannot be achieved by assimilating only precipitation echoes.


Sign in / Sign up

Export Citation Format

Share Document