scholarly journals Wind Load Design of Photovoltaic Power Plants by Comparison of Design Codes and Wind Tunnel Tests

2019 ◽  
Vol 15 (3) ◽  
pp. 13-27
Author(s):  
Ovidiu Bogdan ◽  
Dan Creţu

Abstract Wind load design of the ground-mounted photovoltaic (PV) power plants requires interpretation of the design code considering the particularities of these structures. The PV power plants consist on systems of several solar panels. Wind load pressure coefficient evaluation, by design code, for a single solar panel considered as a canopy roof, neglect the group effect and the air permeability of the system. On the other hand, the canopy roofs are structures with medium serviceability, but the PV power plants are structures with low serviceability. This paper discuss the difficulties of the wind load design for the PV power plants ground mounted in Romania and compares the Romanian, German, European and American wind design code specifications with the parameters provided by the wind tunnel test, for this type of structures. For Romanian wind load design an evolution of the 1990, 2004 and 2012 editions of the design codes specifications is also studied. Evaluation of the internal resultants for the structural elements of the PV panel, considering the pressure coefficients and the force coefficients, conducts to different results. Further code explanations and design specifications are required for wind design of the PV power plants.

2018 ◽  
Vol 2018 ◽  
pp. 1-14
Author(s):  
Xianglei Wei ◽  
An Xu ◽  
Ruohong Zhao

The traditional wind-induced response analysis of high-rise buildings conventionally considers the wind load as a stationary stochastic process. That is, for a certain wind direction angle, the reference wind speed (usually refers to the mean wind speed at the building height) is assumed to be a constant corresponding to a certain return period. Combined with the recorded data in wind tunnel test, the structural response can be computed using the random vibration theory. However, in the actual typhoon process, the average wind speed is usually time-variant. This paper combines the interval process model and the nonrandom vibration analysis method with the wind tunnel test and proposes a method for estimating the response boundary of the high-rise buildings under nonstationary wind loads. With the given upper and lower bounds of time-variant wind excitation, this method can provide an effective calculation tool for estimating wind-induced vibration bounds for high-rise buildings under nonstationary wind load. The Guangzhou East tower, which is 530 m high and the highest supertall building in Guangzhou, China, was taken as an example to show the effectiveness of the method. The obtained boundary response can help disaster prevention and control during the passage of typhoons.


2011 ◽  
Vol 71-78 ◽  
pp. 666-672
Author(s):  
Wen Bo Sun ◽  
Qing Xiang Li ◽  
Han Xiang Chen ◽  
Wei Jian Zhou

In this paper, the system and the design philosophy of wheel-spoke cable-membrane structure of Baoan Stadium is introduced firstly. And then the study of wind tunnel test on 1:250 scale model is mainly presented, together with the numerical calculation of the wind dynamic response. Finally, the wind-resistant design of the roof structure based on the results of wind tunnel test and the foreign design codes is generally introduced.


Author(s):  
Hiroki Takahashi ◽  
Katsutoshi Ohdo ◽  
Seiji Takanashi

The Japanese Industrial Safety and Health Law was revised in March 2009 to introduce new measures concerning accidental falls in the construction industry. This revision mandates the use of guard rails, handrails, and other scaffold components. The wind load criteria and structural specifications of scaffolds are regulated by current design codes. Nevertheless, these provisions do not necessarily comply with the newly incorporated legal requirements because they apply to old-style scaffolds. This study examined the wind force on scaffolds by wind tunnel test, with baseboard height used as a parameter. The wind force coefficient of one story of scaffolds was calculated. Wind force coefficient increased as baseboard height increased. The wind force on the scaffolds equipped with baseboards is 9.2 times that on the scaffolds without baseboards. The baseboard must be greater than or equal to 15 cm to satisfy regulation requirements. The wind force coefficient of scaffolds with a 15 cm baseboard is 1.5 times that of the scaffolds without a baseboard. In scaffold design, baseboard height should be considered to guarantee a suitable wind force coefficient.


2010 ◽  
Vol 163-167 ◽  
pp. 4389-4394
Author(s):  
Cheng Qi Wang ◽  
Zheng Liang Li ◽  
Zhi Tao Yan ◽  
Qi Ke Wei

Wind load on complex-shape building, the wind tunnel test and numerical simulation were carried out. The two technologies supplement each other and their results meet well. There are mainly positive pressures on the windward surface, negative pressures on the roof, the leeward surface and the side. Especially, negative pressure is higher in the leeward region of the building corner. Its effect induced by the shape of the complex-shape building is remarkable.


Sign in / Sign up

Export Citation Format

Share Document