scholarly journals Characterizing urban pollution variability in Central Poland using radon-222

Nukleonika ◽  
2020 ◽  
Vol 65 (2) ◽  
pp. 59-65
Author(s):  
Scott D. Chambers ◽  
Agnieszka Podstawczyńska

AbstractFour years of observations of radon, meteorology and atmospheric pollution was used to demonstrate the efficacy of combined diurnal and synoptic timescale radon-based stability classification schemes in relating atmospheric mixing state to urban air quality in Zgierz, Central Poland. Nocturnal radon measurements were used to identify and remove periods of non-stationary synoptic behaviour (13–18% of each season) and classify the remaining data into five mixing states, including persistent temperature inversion (PTI) conditions, and non-PTI conditions with nocturnal conditions ranging from well mixed to stable. Mixing state classifications were performed completely independently of site meteorological measurements. World Health Organization guideline values for daily PM2.5/PM10 were exceeded only under strong PTI conditions (3–15% of non-summer months) or often under non-PTI stable nocturnal conditions (14–20% of all months), when minimum nocturnal mean wind speeds were also recorded. In non-summer months, diurnal amplitudes of NO (CO) increased by the factors of 2–12 (3–7) from well-mixed nocturnal conditions to PTI conditions, with peak concentrations occurring in the morning/evening commuting periods. Analysis of observations within radon-derived atmospheric mixing ‘class types’ was carried out to substantially clarify relationships between meteorological and air quality parameters (e.g. wind speed vs. PM2.5 concentration, and atmospheric mixing depth vs. PM10 concentration).

2019 ◽  
Vol 12 (8) ◽  
pp. 4455-4477 ◽  
Author(s):  
Dafina Kikaj ◽  
Janja Vaupotič ◽  
Scott D. Chambers

Abstract. One year of meteorological and atmospheric radon observations in a topographically complex subalpine basin are used to identify persistent temperature inversion (PTI) events. PTI events play a key role in public health due to the accumulation of urban pollutants that they cause. Two techniques are compared: a new radon-based method (RBM), based on single-height 222Rn measurements from a single centrally located station, and an existing pseudo-vertical temperature gradient method (TGM) based on observations from eight weather stations around the subalpine basin. The RBM identified six PTI events (four in winter, two in autumn), a subset of the 17 events identified by the TGM. The RBM was more consistent in its identification of PTI events for all seasons and more selective of persistent strongly stable conditions. The comparatively poor performance of the TGM was attributed to seasonal inconsistencies in the validity of the method's key assumptions (influenced by mesoscale processes, such as local drainage flows, nocturnal jets, and intermittent turbulence influence) and a lack of snow cover in the basin for the 2016–2017 winter period. Corresponding meteorological quantities for RBM PTI events (constituting 27 % of the autumn–winter cold season) were well characterized. PTI wind speeds in the basin were consistently low over the whole diurnal cycle (typically 0.2–0.6 m s−1). Suitability of the two techniques for air quality assessment was compared using hourly PM10 observations. Peak PM10 concentrations for winter (autumn) PTI events were underestimated by 13 µg m−3 (11 µg m−3) by the TGM compared with the RBM. Only the RBM indicated that nocturnal hourly mean PM10 values in winter PTI events can exceed 100 µg m−3, the upper threshold of low-level short-term PM10 exposure according to World Health Organization guidelines. The efficacy, simplicity, and cost effectiveness of the RBM for identifying PTI events has the potential to make it a powerful tool for urban air quality management in complex terrain regions, for which it adds an additional dimension to contemporary atmospheric stability classification tools. Furthermore, the long-term consistency of the radon source function will enable the RBM to be used in the same way in future studies, enabling the relative magnitude of PTI events to be gauged, which is expected to assist with the assessment of public health risks.


Author(s):  
Alexandra Viana Silva ◽  
Cristina M. Oliveira ◽  
Nuno Canha ◽  
Ana Isabel Miranda ◽  
Susana Marta Almeida

Understanding air pollution in urban areas is crucial to identify mitigation actions that may improve air quality and, consequently, minimize human exposure to air pollutants and their impact. This study aimed to assess the temporal evolution of the air quality in the city of Setúbal (Portugal) during a time period of 10 years (2003–2012), by evaluating seasonal trends of air pollutants (PM10, PM2.5, O3, NO, NO2 and NOx) measured in nine monitoring stations. In order to identify emission sources of particulate matter, PM2.5 and PM2.5–10 were characterized in two different areas (urban traffic and industrial) in winter and summer and, afterwards, source apportionment was performed by means of Positive Matrix Factorization. Overall, the air quality has been improving over the years with a decreasing trend of air pollutant concentration, with the exception of O3. Despite this improvement, levels of PM10, O3 and nitrogen oxides still do not fully comply with the requirements of European legislation, as well as with the guideline values of the World Health Organization (WHO). The main anthropogenic sources contributing to local PM levels were traffic, industry and wood burning, which should be addressed by specific mitigation measures in order to minimize their impact on the local air quality.


2020 ◽  
Vol 12 (1si) ◽  
pp. 11
Author(s):  
Shofi Hikmatus Zahro

Introduction: Covid19 is an infectious disease caused by the corona virus. This virus was first detected in Wuhan China. Covid19 has been defined as pandemic by the World Health Organization (WHO) since March 11, 2020. So there needs to be a policy to overcome the pandemic by implementing lockdown. The effect on the health sector one of which is environmental health includes air quality. The purpose of this literature review study is to determine the effect of the lockdown policy during the Covid19 pandemic on air quality parameters. Discussion: This research used a narrative literature review method. Selected journals that match the topic and inclusion criteria. The results of data analysis show that there is an effect of the lockdown policy during the Covid19 pandemic, namely an increase in AQI and O3 . Meanwhile, decreased concentration occurs in the PM10; PM2.5; NO2 ; CO; and SO2 parameters. Conclusion: Lockdown policy provided a big influence on the air quality in Sale City Marocco and Sao Paulo Brazil. Lockdown policies during the Covid19 period strongly influenced the concentration of NO2 .6


2020 ◽  
Vol 13 (3-4) ◽  
pp. 27-33
Author(s):  
Ankit Sikarwar ◽  
Ritu Rani

Abstract In India, a nationwide lockdown due to COVID-19 has been implemented on 25 March 2020. The lockdown restrictions on more than 1.3 billion people have brought exceptional changes in the air quality all over the country. This study aims to analyze the levels of three major pollutants: particulate matter sized 2.5 μm (PM2.5) and 10 μm (PM10), and nitrogen dioxide (NO2) before and during the lockdown in Delhi, one of the world’s most polluted cities. The data for PM2.5, PM10, and NO2 concentrations are derived from 38 ground stations dispersed within the city. The spatial interpolation maps of pollutants for two times are generated using Inverse Distance Weighting (IDW) model. The results indicate decreasing levels of PM2.5, PM10, and NO2 concentrations in the city by 93%, 83%, and 70% from 25 February 2020 to 21 April 2020 respectively. It is found that one month before the lockdown the levels of air pollution in Delhi were critical and much higher than the guideline values set by the World Health Organization. The levels of air pollution became historically low after the lockdown. Considering the critically degraded air quality for decades and higher morbidity and mortality rate due to unhealthy air in Delhi, the improvement in air quality due to lockdown may result as a boon for the better health of the city’s population.


2020 ◽  
pp. 1-6
Author(s):  
Prof. Atubi, Augustus ◽  
Osoyibo, Joseph

This study investigated the levels and spatial distribution of key air quality parameters within Asaba and environs.Five locations were sampled to assess the concentration of Nitrogen dioxide (NO2), Sulphur dioxide (SO2), hydrogen sulphide (H2S), carbon monoxide (CO) and volatile organic compounds (VOCs). Measurement of Air pollutants methods approved by ASTM was adopted for each specific parameter. All equipment and meters were properly precalibrated before each usage for quality assurance.Findings of the study showed that measured levels of CO (0.08-0.20 ppm),H2S (0.01-0.10 ppm) and VOCs (13-20 ppm) in all sampling areas were below World Health Organization (WHO) and National Air Quality (NAQ) Guidelines and Standards for ambient conditions. However, NO2 (0.11-0.25 ppm) in all sampling areas was quite high and above regulatory limits.SO2 (0.15-0.25 ppm) was within the acceptable limit in Okwe and Ibusa but above regulatory limits in Asaba,Anwai and Okpanam.The results suggest Routine measurements should be made on a continuous basis to ascertain the volume of gaseous pollutants in the urban and rural environments


Author(s):  
Adinife Patrick Azodo ◽  
Idama Omokaro ◽  
Tochukwu Canice Mezue

Introduction: Toxic gases emitted from electricity generating plants used for energy production process diffuse in the environment thereby causing environmental air pollution. The effect of the installation and usage of portable gasoline electricity generating plants at the balcony of different households on the indoor air quality was assessed in this study. Materials and methods: The data collected were the air quality chemical composition variables which include carbon-dioxide, formaldehyde, total volatile organic compounds, coarse (PM10), and fine (PM2.5) particulate matters at the indoor of the households in Abeokuta metropolis, Ogun state, Nigeria. Physical measurement techniques used for the data collection was through the instrumentation design of two air quality testers, models WP6910 and ZN-202S. The indoor air quality assessment followed the generator nighttime usage routine between the hours of 6:30 – 10:00 pm at a measurement height of 1.3 m and the center in the living rooms of the residences assessed. Results: The analysis of the data obtained showed that the mean values for each of the air quality parameters obtained during generator usages were significantly higher when compared to the indoor air quality parameters before generator usages at p<0.05. The air pollutant levels before and during generator usages were within the established safe standard air quality limit by the world health organization. Conclusion: However, for the installation of a portable electricity generator at the residents’ balcony, it is recommended that the generators should be adapted with an emission reduction device for the exhaust composition amelioration to avoid possible accumulation effect over time.


2019 ◽  
Author(s):  
Dafina Kikaj ◽  
Janja Vaupotič ◽  
Scott Chambers

Abstract. One year of meteorological and atmospheric radon observations in a topographically-complex Subalpine Basin are used to identify ‘persistent temperature inversion’ (PTI) events. PTI events play a key role in public health due to the accumulation of urban pollutants that they cause. Two identification techniques are compared: a new method, based on single-height radon measurements from a single centrally-located station, and an existing approach based on observations from eight weather stations around the Subalpine Basin. After describing the radon-based method (RBM), its efficacy is compared with that of the existing pseudo-vertical temperature gradient method (TGM). The RBM identified 6 PTI events over the year (4 in winter, 2 in autumn), a subset of the 17 events identified by the TGM. The RBM is demonstrated to be more consistent in its identification of PTI events, and more selective of persistent strongly stable conditions. Furthermore, its performance is seasonally independent. The comparatively poor performance of the TGM was attributed to seasonal inconsistencies in the validity of the method’s key assumptions (influenced by mesoscale processes, such as local drainage flows, nocturnal jets, and intermittent turbulence influence), and a lack of snow cover in the basin for the 2016–2017 winter period. Corresponding meteorological quantities for RBM PTI events (constituting 27 % of the autumn–winter cold season), were well characterised. PTI wind speeds in the basin were consistently low over the whole diurnal cycle (typically 0.2–0.6 m s−1). The comparative efficacy of the RBM for PTI air quality assessment is demonstrated using hourly PM10 observations throughout the year. Peak hourly mean PM10 concentrations for winter (autumn) PTI events were underestimated by 13 µg m−3 (11 µg m−3) by the TGM compared with the RBM. Only the RBM indicated that nocturnal hourly mean PM10 values in winter PTI events can exceed 100 µg m−3, the upper threshold of low-level short-term PM10 exposure according to World Health Organisation guidelines. The efficacy, simplicity and cost effectiveness of the RBM for identifying PTI events has the potential to make it a powerful tool for urban air quality management in complex terrain regions; for which it adds an additional dimension to contemporary atmospheric stability classification tools. Furthermore, the long-term consistency of the radon source function will enable the RBM to be used in the same way in future studies, enabling the relative magnitude of PTI events to be gauged, which is expected to assist with the assessment of public health risks.


Author(s):  
Ankit Sikarwar ◽  
Ritu Rani

Abstract In India, the nationwide lockdown due to COVID-19 has been implemented on 25 March 2020. The lockdown restrictions on more than 1.3 billion people have brought exceptional changes in the air quality all over the country. This study aims to analyze the levels of three major pollutants (PM2.5, PM10, and NO2) before and during the lockdown in Delhi, one of the world’s most polluted cities. The data for PM2.5, PM10, and NO2 concentrations are derived from 38 ground stations dispersed within the city. The spatial interpolation maps of pollutants for two times are generated using Inverse Distance Weighting (IDW) model. The results indicate the lowering of PM2.5, PM10, and NO2 concentrations in the city by 93%, 83%, and 70% from 25 February 2020 to 21 April 2020 respectively. It is found that before one month of the lockdown the levels of air pollution in Delhi were critically high and far beyond the guideline values set by the World Health Organization. The levels of air pollution are historically low after the lockdown. Considering the critically degraded air quality for decades and higher morbidity and mortality rate due to unhealthy air in Delhi, the improvement in air quality due to lockdown may result as a boon for the better health of the city’s population.


2018 ◽  
Vol 8 (6) ◽  
pp. 3576-3579 ◽  
Author(s):  
A. R. Jatoi ◽  
A. Q. Jakhrani ◽  
K. C. Mukwana ◽  
A. N. Laghari ◽  
M. M. Tunio

Drinking water quality is being affected by industrial effluents, pesticides and fertilizers, poor sanitation services and unhygienic practices. Thus, upper and middle-class people used to prefer bottled water for drinking instead of tap water. Increasing demand for bottled water leads to the presence of low quality branded waters in the market due to the high demand and improper quality checks. In this regard, this study is carried out to assess the physicochemical properties of various branded bottled waters. For that, ten different water brand samples, coded from S1 to S10, were collected from Safoora Goth, Karachi. Various physicochemical quality parameters of branded water samples were analyzed according to the set procedures of American Society for Testing and Materials. It was discovered that the pH levels of S9 and S8 bottled water brands were slightly less than World Health Organization guideline values. The physical and chemical quality parameters of S1, S2, S4, S5, S7, and S10 branded bottled water samples were found within standards.


Author(s):  
Gabriela Ventura Silva ◽  
Anabela O. Martins ◽  
Susana D. S. Martins

Indoor air pollution has obtained more attention in a moment where “stay at home” is a maximum repeated for the entire world. It is urgent to know the sources of pollutants indoors, to improve the indoor air quality. This study presents some results obtained for twelve incense products, used indoors, at home, and in temples, but also in spa centers or yoga gymnasiums, where the respiratory intensity is high, and the consequences on health could be more severe. The focus of this study was the gaseous emissions of different types of incense, performing a VOC screening and identifying some specific VOCs different from the usual ones, which are known or suspected to cause severe chronic health effects: carcinogenic, mutagenic, and reprotoxic. Thirteen compounds were selected: benzene, toluene, styrene, naphthalene, furfural, furan, isoprene, 2-butenal, phenol, 2-furyl methyl ketone, formaldehyde, acetaldehyde, and acrolein. The study also indicated that incense cone type shows a higher probability of being more pollutant than incense stick type, as from the 12 products tested, four were cone type, and three of them were in the group of the four higher polluters. Benzene and formaldehyde presented worrying levels in the major part of the products, above guideline values established by the WHO. Unfortunately, there are no limit values established for indoor air for all the compounds studied, but this fact should not exempt us from taking action to alert the population to the potential dangers of using those products. From this study, acetaldehyde, acrolein, furfural, and furan emerge as compounds with levels to deserve attention.


Sign in / Sign up

Export Citation Format

Share Document