scholarly journals Water Entry of A Wedge Into Waves in Three Degrees Offreedom

2019 ◽  
Vol 26 (1) ◽  
pp. 117-124
Author(s):  
Shi Yan Sun ◽  
Hai Long Chen ◽  
Gang Xu

Abstract The hydrodynamic problem of a two-dimensional wedge entering into a nonlinear wave in three degrees of freedom is investigated based on the incompressible velocity potential theory. The problem is solved through the boundary element method in the time domain. To avoid numerical difficulties due to an extremely small contact area at the initial stage, a stretched coordinate system is used based on the ratio of the Cartesian system in the physical space to the distance travelled by the wedge in the vertical direction. The mutual dependence of body motion and wave loading is decoupled by using the auxiliary function method. Detailed results about body accelerations, velocities and displacements at different Froude numbers or different waves are provided, and the mutual effect between body motion and wave loading is analysed in depth.

Author(s):  
G. D. Xu ◽  
W. Y. Duan ◽  
G. X. Wu

The water entry problem of a wedge through free fall in three degrees of freedom is studied through the velocity potential theory for the incompressible liquid. In particular, the effect of the body rotation is taken into account, which seems to have been neglected so far. The problem is solved in a stretched coordinate system through a boundary element method for the complex potential. The impact process is simulated based on the time stepping method. Auxiliary function method has been used to decouple the mutual dependence between the body motion and the fluid flow. The developed method is verified through results from other simulation and experimental data for some simplified cases. The method is then used to undertake extensive investigation for the free fall problems in three degrees of freedom.


1989 ◽  
Vol 111 (3) ◽  
pp. 233-241 ◽  
Author(s):  
S. K. Chakrabarti ◽  
D. C. Cotter

A versatile and efficient method of analysis has been developed to analyze a mooring system composed of a floating structure, e.g., a ship, mooring lines, fenders, and an articulated tower. The floating structure is assumed to be large, but may have an arbitrary shape, and the tower is assumed to be axisymmetrical. Although the program treats the floating structure and tower as a system, each body may be examined alone in the absence of the other. The analysis is carried out in the time domain assuming rigid body motion, and the solution is generated by a forward integration scheme. This approach permits nonlinear line and fender forces to be incorporated readily into the analysis. The exciting forces in the analysis are wind, current, and waves, which are not necessarily collinear. The waves can be single frequency or composed of multiple frequency components. The vessel is free to respond to the exciting forces in six degrees of freedom—surge, heave, sway, roll, pitch, and yaw. The tower is free to respond in two degrees of freedom—oscillation and precession. The analysis has been extensively verified with several different model tests for different structure configurations in regular and random seas. These include an articulated tower, a single-point mooring tanker system, a floating caisson and an inclined mooring tower.


2020 ◽  
Vol 8 (2) ◽  
pp. 131 ◽  
Author(s):  
Maria Gabriella Gaeta ◽  
Giacomo Segurini ◽  
Adrià M. Moreno ◽  
Renata Archetti

A three degrees-of-freedom model based on the potential flow theory was implemented to represent the motion of a slender cylindrical buoy under waves. The model calibration was performed by means of the comparison between the model results and the experiments performed at the Laboratory of Hydraulic Engineering of the University of Bologna (Italy). The dynamics of the floating cylinder, placed at the mid-section of the wave flume and anchored at the bottom through a mooring system of four catenaries, were obtained through videography analysis, providing surge, heave and pitch motions. The implementation of the mathematical model consisted of two main parts: The first has been developed in the frequency domain by applying NEMOH to assess the hydrodynamic coefficients of the object, i.e., the excitation, radiation and added mass coefficients; then, the used mooring system was included in the time-domain model, solving the motion of the floating cylinder, by calibrating the mooring coefficients by comparing the results with the data. The simplicity of the implemented model is a very important feature, and it should be used as a preliminary study to understand the response of moored floating cylinders and others floating bodies under waves.


2018 ◽  
Vol 51 (13) ◽  
pp. 372-377 ◽  
Author(s):  
Juan E. Andrade García ◽  
Alejandra Ferreira de Loza ◽  
Luis T. Aguilar ◽  
Ramón I. Verdés

Author(s):  
A. H. S. Iyer ◽  
M. H. Colliander

Abstract Background The trend in miniaturisation of structural components and continuous development of more advanced crystal plasticity models point towards the need for understanding cyclic properties of engineering materials at the microscale. Though the technology of focused ion beam milling enables the preparation of micron-sized samples for mechanical testing using nanoindenters, much of the focus has been on monotonic testing since the limited 1D motion of nanoindenters imposes restrictions on both sample preparation and cyclic testing. Objective/Methods In this work, we present an approach for cyclic microcantilever bending using a micromanipulator setup having three degrees of freedom, thereby offering more flexibility. Results The method has been demonstrated and validated by cyclic bending of Alloy 718plus microcantilevers prepared on a bulk specimen. The experiments reveal that this method is reliable and produces results that are comparable to a nanoindenter setup. Conclusions Due to the flexibility of the method, it offers straightforward testing of cantilevers manufactured at arbitrary position on bulk samples with fully reversed plastic deformation. Specific microstructural features, e.g., selected orientations, grain boundaries, phase boundaries etc., can therefore be easily targeted.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Xiaohui Liu ◽  
Ming Zou ◽  
Chuan Wu ◽  
Mengqi Cai ◽  
Guangyun Min ◽  
...  

A new quad bundle conductor galloping model considering wake effect is proposed to solve the problem of different aerodynamic coefficients of each subconductor of iced quad bundle conductor. Based on the quasistatic theory, a new 3-DOF (three degrees of freedom) galloping model of iced quad bundle conductors is established, which can accurately reflect the energy transfer and galloping of quad bundle conductor in three directions. After a series of formula derivations, the conductor stability judgment formula is obtained. In the wind tunnel test, according to the actual engineering situation, different variables are set up to accurately simulate the galloping of iced quad bundle conductor under the wind, and the aerodynamic coefficient is obtained. Finally, according to the stability judgment formula of this paper, calculate the critical wind speed of conductor galloping through programming. The dates of wind tunnel test and calculation in this paper can be used in the antigalloping design of transmission lines.


Sign in / Sign up

Export Citation Format

Share Document