scholarly journals Study of Rhizobia Impact on Nutritional Element Concentration in Legumes

Author(s):  
Māris Bērtiņš ◽  
Alise Klūga ◽  
Laila Dubova ◽  
Pēteris Petrēvics ◽  
Ina Alsiņa ◽  
...  

Abstract The concentration of nitrogen in the Earth’s atmosphere is about 78%, but most plants are not able to acquire it directly from the atmosphere. One of the most common ways for binding atmospheric nitrogen is the development of an efficient symbiotic system between legumes and rhizobia. The aim of this study was to compare how different legumes and rhizobia symbiosis systems affect the concentrations of nutrients and other elements in soya and faba beans. Seeds of plants were inoculated with a preparation of rhizobia just before sowing. Plant samples were collected at the flowering stage (vegetative parts) and during harvest (seeds). Samples were air-dried and analysed with inductively coupled plasma mass spectrometry (ICP-MS). Total nitrogen and carbon concentrations were determined with an elemental analyser (EA). The obtained results showed that inoculation of legume plants with rhizobia not only affected nitrogen uptake by plants but also uptake of other elements. Inoculation had an effect on mineral element uptake for both faba bean and soybean leaves, where a significant increase in Mg, P, K, and Ca was observed. Treatment of legume plants with rhizobia caused a decrease of P and K concentrations in seeds, and there were changes in Fe and Mn concentrations.

2013 ◽  
Vol 845 ◽  
pp. 462-466 ◽  
Author(s):  
H. Mas-Ayu ◽  
S. Izman ◽  
Mohammed Rafiq Abdul Kadir ◽  
Rosdi Daud ◽  
A. Shah ◽  
...  

The releases of harmful ions from cobalt based alloy to host tissues have raised significant health concerns. Carbon contents in this alloy may influence ions release but has yet investigated. It is hypothesized that carbon contents in this alloy will help the formation of oxide layer during thermal oxidation process and hence reducing the release of Co/Cr ions after implantation. In this study, Co-Cr-Mo alloy with carbon concentrations of 0.03% and 0.24% were oxidized at 1050°C for 3 hours under atmospheric condition. The oxidized substrates were characterized under FESEM and subjected to circulating immersion test in simulated body fluid (SBF) for 21 days. Metal ions release was measured using inductively coupled plasma-mass spectrometry (ICP-MS) at day 0, 7, 14 and 21. Oxidized high carbon samples show denser and a more uniform oxide layer than samples with low carbon contents. It is found that compact oxide structure promotes less metal ions release during immersion.


Molecules ◽  
2020 ◽  
Vol 25 (9) ◽  
pp. 2179
Author(s):  
Georgios Koutrotsios ◽  
Georgios Danezis ◽  
Constantinos Georgiou ◽  
Georgios I. Zervakis

Few data exist about the effect of substrates’ elemental content on the respective concentrations in cultivated mushrooms, on the degradation of lignocellulosics or on production parameters. Sixteen elements (14 metals and 2 metalloids) were measured by inductively coupled plasma mass spectrometry (ICP-MS) in Pleurotus ostreatus and Cyclocybe cylindracea mushrooms, and in their seven cultivation substrates composed of various plant-based residues. Results revealed a high variability in elemental concentration among substrates which generally led to significant differences in the respective mushroom contents. High bioconcentration factors (BCFs) were noted for Cd, Cu, Mg and Zn for both species in all substrates. BCF of each element was variously affected by substrates’ pH, crude composition, and p and K content. Significant positive correlations were demonstrated for Cu, Fe, Mn and Li concentrations vs. a decrease of cellulose and hemicellulose in P. ostreatus substrates, and vs. mushrooms’ biological efficiency. In the case of C. cylindracea, Be, Mg and Mn concentrations were positively correlated with the decrease of hemicellulose in substrates, while a significant positive correlation was also recorded vs. mushroom productivity. Finally, it was found that 15% to 35% of the daily dietary needs in Mg, Se and Zn could be covered by mushroom consumption.


2019 ◽  
Author(s):  
Ingo Strenge ◽  
Carsten Engelhard

<p>The article demonstrates the importance of using a suitable approach to compensate for dead time relate count losses (a certain measurement artefact) whenever short, but potentially strong transient signals are to be analysed using inductively coupled plasma mass spectrometry (ICP-MS). Findings strongly support the theory that inadequate time resolution, and therefore insufficient compensation for these count losses, is one of the main reasons for size underestimation observed when analysing inorganic nanoparticles using ICP-MS, a topic still controversially discussed.</p>


Sign in / Sign up

Export Citation Format

Share Document