scholarly journals Elemental Content in Pleurotus ostreatus and Cyclocybe cylindracea Mushrooms: Correlations with Concentrations in Cultivation Substrates and Effects on the Production Process

Molecules ◽  
2020 ◽  
Vol 25 (9) ◽  
pp. 2179
Author(s):  
Georgios Koutrotsios ◽  
Georgios Danezis ◽  
Constantinos Georgiou ◽  
Georgios I. Zervakis

Few data exist about the effect of substrates’ elemental content on the respective concentrations in cultivated mushrooms, on the degradation of lignocellulosics or on production parameters. Sixteen elements (14 metals and 2 metalloids) were measured by inductively coupled plasma mass spectrometry (ICP-MS) in Pleurotus ostreatus and Cyclocybe cylindracea mushrooms, and in their seven cultivation substrates composed of various plant-based residues. Results revealed a high variability in elemental concentration among substrates which generally led to significant differences in the respective mushroom contents. High bioconcentration factors (BCFs) were noted for Cd, Cu, Mg and Zn for both species in all substrates. BCF of each element was variously affected by substrates’ pH, crude composition, and p and K content. Significant positive correlations were demonstrated for Cu, Fe, Mn and Li concentrations vs. a decrease of cellulose and hemicellulose in P. ostreatus substrates, and vs. mushrooms’ biological efficiency. In the case of C. cylindracea, Be, Mg and Mn concentrations were positively correlated with the decrease of hemicellulose in substrates, while a significant positive correlation was also recorded vs. mushroom productivity. Finally, it was found that 15% to 35% of the daily dietary needs in Mg, Se and Zn could be covered by mushroom consumption.

Environments ◽  
2022 ◽  
Vol 9 (1) ◽  
pp. 10
Author(s):  
Zvjezdana Stančić ◽  
Željka Fiket ◽  
Andreja Vuger

The aim of this study was to determine the extent and patterns of antimony and tin contamination in soils along railway lines, as there are very few data in the literature on this subject. The study was conducted in north-western Croatia. Total and bioavailable concentrations of Sn and Sb were detected using high resolution inductively coupled plasma mass spectrometry (HR-ICP-MS). The following results were obtained: total concentrations of Sb ranged from 0.98 to 52.0 mg/kg and of Sn from 3.04 mg/kg to 97.6 mg/kg. The soil samples showed pronounced Sb and Sn enrichment, up to 87 and 33 times the median value for European soils, respectively. In contrast to the total concentrations, the bioavailable concentrations showed relatively low values. For Sn, the percentage of total content ranged from 0.001 to 0.021%, while for Sb it ranged from 0.001 to 0.136%. Statistical data analysis suggests that the distribution of Sb and Sn in soils near railway lines is influenced by the functional use of the site, distance from the tracks, topography, age of the railway line, and also by soil properties such as soil texture, humus content, and soil pH. This study demonstrates that rail transport is a source of soil pollution with Sn and Sb. The origin of Sb and Sn enrichment is abrasion by brakes, rails, wheels, freight losses, exhaust gasses, etc. Both elements in soils along railway lines pose an environmental risk to humans, agricultural production, and wildlife, and therefore further detailed studies are required.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Adam Sajnóg ◽  
Elwira Koko ◽  
Dariusz Kayzer ◽  
Danuta Barałkiewicz

AbstractIn this paper 13 elements, both physiological and causing toxic effects, were determined by inductively coupled plasma mass spectrometry in roots of 26 species of herbs used in Traditional Chinese Medicine. The herbs were purchased from online shop in two batches 1 year apart to verify the variability of elemental content in time. The multivariate statistical methods—multiple regression, canonical variates and interaction effect analysis—were applied to interpret the data and to show the relationships between elements and two batches of herb roots. The maximum permissible concentration of Cd (0.3 mg kg−1) was exceeded in 7 herb roots which makes 13% of all specimens. The multiple regression analysis revealed the significant relationships between elements: Mg with Sr; V with Pb, As and Ba; Mn with Pb; Fe with As and Ba; Co with Ni and Sr, Cu with Pb, Cd and As; Zn with Pb, Cd, As and Ba. The canonical variates analysis showed that the statistical inference should not be based solely on the type of herb or number of batch because of the underlying interaction effects between those two variables that may be a source of variability of the content of determined elements.


Author(s):  
Māris Bērtiņš ◽  
Alise Klūga ◽  
Laila Dubova ◽  
Pēteris Petrēvics ◽  
Ina Alsiņa ◽  
...  

Abstract The concentration of nitrogen in the Earth’s atmosphere is about 78%, but most plants are not able to acquire it directly from the atmosphere. One of the most common ways for binding atmospheric nitrogen is the development of an efficient symbiotic system between legumes and rhizobia. The aim of this study was to compare how different legumes and rhizobia symbiosis systems affect the concentrations of nutrients and other elements in soya and faba beans. Seeds of plants were inoculated with a preparation of rhizobia just before sowing. Plant samples were collected at the flowering stage (vegetative parts) and during harvest (seeds). Samples were air-dried and analysed with inductively coupled plasma mass spectrometry (ICP-MS). Total nitrogen and carbon concentrations were determined with an elemental analyser (EA). The obtained results showed that inoculation of legume plants with rhizobia not only affected nitrogen uptake by plants but also uptake of other elements. Inoculation had an effect on mineral element uptake for both faba bean and soybean leaves, where a significant increase in Mg, P, K, and Ca was observed. Treatment of legume plants with rhizobia caused a decrease of P and K concentrations in seeds, and there were changes in Fe and Mn concentrations.


2019 ◽  
Author(s):  
Ingo Strenge ◽  
Carsten Engelhard

<p>The article demonstrates the importance of using a suitable approach to compensate for dead time relate count losses (a certain measurement artefact) whenever short, but potentially strong transient signals are to be analysed using inductively coupled plasma mass spectrometry (ICP-MS). Findings strongly support the theory that inadequate time resolution, and therefore insufficient compensation for these count losses, is one of the main reasons for size underestimation observed when analysing inorganic nanoparticles using ICP-MS, a topic still controversially discussed.</p>


Sign in / Sign up

Export Citation Format

Share Document