scholarly journals Optimization of the Geometric Parameters of the Thermal Insulation of the Heating System by Using Multi-Pipe Circular Thermal Insulation

2021 ◽  
Vol 25 (1) ◽  
pp. 955-964
Author(s):  
Tomasz Janusz Teleszewski ◽  
Dorota Anna Krawczyk ◽  
Antonio Rodero

Abstract The publication presents a design solution for circular multi-pipe thermal insulation and an example of an existing heating installation consisting of six individual heating pipes in the building of the Bialystok University of Technology. In the paper, the arrangement of six heating system pipes in circular thermal insulation was designed in such a way that one heating pipe is centrally located in the circular thermal insulation, the other five heating pipes are located at the vertices of a regular pentagon inside the circular thermal insulation. Heat loss calculations were made using the Boundary Elements Method (BEM) with the actual boundary conditions in the room where the existing heating installation is located. Additionally, the ecological effect was determined in the form of reduction of pollutants emitted into the atmosphere resulting from heat losses for the developed multi-pipe thermal insulation. The calculation results showed a significant reduction in heat losses as a result of the use of multi-pipe thermal insulation in relation to the existing single heating installation. The use of multi-pipe insulation undoubtedly follows the trend of energy-saving heat transport and is an alternative to the commonly used single pipes.

Energies ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 2104 ◽  
Author(s):  
Dorota Anna Krawczyk ◽  
Tomasz Janusz Teleszewski

This paper presents possible variants of reducing the heat loss in an existing heating network made from single pre-insulated pipes located in central Europe. In order to achieve this aim, simulations were carried out for five different variants related to the modification of the network operation temperature, replacement of a single network with a double pre-insulated one, and changes in the cross-section geometry of the thermal insulation of the double heating network from circular to egg-shaped. The proposed egg-shaped thermal insulation was obtained by modifying the shape of the Cassini oval, in that the supply pipe has a greater insulation thickness compared to the return pipe. The larger insulation field in the supply pipe contributed to reducing the heat flux density around the supply line and, as a result, to significantly reducing heat loss. The egg-shaped thermal insulation described in the publication in a mathematical formula can be used in practice. This work compares the heat losses for the presented variants and determines the ecological effect. Heat losses were determined using the boundary element method (BEM), using a proprietary computer program written as part of the VIPSKILLS 2016-1-PL01-KA203-026152 project Erasmus+.


2015 ◽  
Vol 5 (2) ◽  
pp. 107-112
Author(s):  
Aleksandr Anatol'evich CHULKOV

The results of experimental studies of thermal state of heat transport lines are viewed. Ready-to-use PU foarm unsulation in polyethylene sheath is taken as thermal insulation of heating system lines under the ground. Readyto- use PU foarm unsulation in sheet galvanized steel sheath is taken as thermal insulation of heating system lines aboveground. Experimental results permit to determine real heat losses of heat transport systems.


2012 ◽  
Vol 18 (6) ◽  
pp. 828-833 ◽  
Author(s):  
Nerijus Venckus ◽  
Raimondas Bliūdžius ◽  
Jurga Poderytė ◽  
Arūnas Burlingis

Low energy buildings require an efficient thermal insulation of the envelopes ensuring minor heat losses; such buildings must be tight in order to avoid heat losses due to over-infiltration. Installation of a heating recovery system compensates for some heat used for heating the ventilation air. The design solution of transparent envelopes of low energy buildings determines significant solar heat gains that compensate for a part of heat losses through the envelopes and ventilation systems. Taking into account these properties of low energy buildings, the modeling of indoor temperatures of such building was carried out at varying outdoor temperatures and power of the heating system. On the grounds of the obtained results, it was determined that a lower heat source power than the one determined according to the outdoor temperature of the coldest five-day period can be used to meet the indoor microclimate requirements in a low energy building. In this way, the expenses of heating system installation are reduced and the operational efficiency of the heat source is increased.


Energies ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4699
Author(s):  
Tomasz Janusz Teleszewski ◽  
Dorota Anna Krawczyk ◽  
Antonio Rodero

The paper presents an analysis of heat loss and reductions of annual emissions of air pollutants of a quadruple pre-insulated heating network by comparing this solution with the existing pre-insulated network consisting of four pre-insulated single pipes and the variant consisting of two twin pipe pre-insulated. For calculations, an existing heating network located in central Poland was adopted, where heat is transported for heating purposes of buildings and domestic hot water with circulation of domestic hot water through four separate pre-insulated underground pipes. The idea of the construction of four pre-insulated pipes presented in the paper consists in the location of four steel pipes in a common round thermal insulation, which perform the role of heat transport for heating purposes in multi-family buildings (supply and return) and two pipes transporting hot water (a pipe with domestic hot water with circulation). In Poland, heating pipes used in multi-family housing have a larger diameter compared to domestic hot water pipes, which is why standard twin pipe heating pipes have been used in the construction of four pre-insulated networks, in which the domestic hot water pipe has been added to the thermal insulation and circulation of domestic hot water. In order to determine heat losses, a simplified two-dimensional model of conductive heat transfer was developed using Fortran to create a computer program. The results of numerical simulations show that the use of twin pipes for the construction of pre-insulated quadruple networks has contributed to a significant reduction in heat loss in relation to the existing single pre-insulated network (up to 57.1%), while reducing the thermal insulation field of the cross-section of the pre-insulated pipe by 21.4%.


2019 ◽  
Vol 887 ◽  
pp. 196-203
Author(s):  
Lucie Horká ◽  
Jiri Hirs

This case study is aimed at simulation of dry floor heating system. Heating pipes are inserted in system boards made of thermal insulation. These boards should be supplemented with spreader plates which are installed under the heating pipes. Impact of different thermal conductivity of spreader plates on useful heat flux and uniformity of temperature field is examined. Heat losses are also investigated. These simulations are performed using software CalA with time steady-state boundary conditions. The results show that the dry floor heating system without spreader plates has very low useful heat flux caused by positioning of heating pipes in the insulation material. On the other hand, use of spreader plates causes significant increase of useful heat flux of this system. The higher heat conductivity of spreader plates is, the higher useful heat flux is. The floor surface temperature is also more uniform and the thermal comfort is better. The minimal thickness of additional heat insulation is determined in order that heat losses are lower than ten percent of total heat flux.


Sign in / Sign up

Export Citation Format

Share Document