scholarly journals Cosmological perturbations in FRW model with scalar field within Hamilton-Jacobi formalism and symplectic projector method

Open Physics ◽  
2006 ◽  
Vol 4 (4) ◽  
Author(s):  
Dumitru Baleanu

AbstractThe Hamilton-Jacobi analysis is applied to the dynamics of the scalar fluctuations about the Friedmann-Robertson-Walker (FRW) metric. The gauge conditions are determined from the consistency conditions. The physical degrees of freedom of the model are obtained by the symplectic projector method. The role of the linearly dependent Hamiltonians and the gauge variables in the Hamilton-Jacobi formalism is discussed.

2012 ◽  
Vol 90 (2) ◽  
pp. 131-135 ◽  
Author(s):  
Shuvendu Chakraborty ◽  
Ujjal Debnath

In this work, we have considered the Friedmann–Robertson–Walker model of the universe for Brans–Dicke (BD) theory with a BD scalar field as a chameleon field. First we have transformed the field equations and conservation equation from Jordan’s frame to Einstein’s frame. We have shown that, in the presence of a variable modified Chaplygin gas (VMCG), the potential function V and another analytic function f always increase with respect to the BD–chameleon scalar field [Formula: see text] but decrease with time t for pure Chaplygin gas, modified Chaplygin gas, and VMCG models.


2015 ◽  
Vol 24 (05) ◽  
pp. 1550032 ◽  
Author(s):  
Abhas Mitra

The Friedmann–Robertson–Walker (FRW) metric expressed, in terms of comoving coordinates (r, t), always looks nonstatic. But by employing the recently derived curvature/Schwarzschild form, (R, T), of FRW metric (A. Mitra, Gravit. Cosmol. 19 (2013) 134), we show here that FRW metric can assume static forms when the net energy density (ρe) is solely due to the vacuum contribution. Earlier this question was explored by Florides (Gen. Relativ. Gravit. 12 (1980) 563) whose approach was complex and of purely mathematical nature. Also, unlike Florides, we do not assume any a priori separability of T(r, t) = F(r)G(t) and thus our treatment is truly general and yet simpler. More interestingly, even if the net energy density involved in a certain FRW model may appear to be nonzero from its algebric appearance, it may still be possible that tacitly ρe = 0 and the model actually corresponds to a vacuum Minkowski metric. For instance, it has been found that FRW universes which appear to be expanding with a fixed speed in comoving coordinates are intrinsically static universes. While such a linearly expanding universe having k = -1 is well-known as the Milne universe, the corresponding k = 0 case has recently been shown to be vacuum in disguise (A. Mitra, Mon. Not. Roy. Astron. Soc. 442 (2014) 382). In addition, here we show that even the k = +1 linearly "expanding" universe (in comoving coordinates) tacitly corresponds to Einstein's static universe.


2019 ◽  
Author(s):  
Riccardo Spezia ◽  
Hichem Dammak

<div> <div> <div> <p>In the present work we have investigated the possibility of using the Quantum Thermal Bath (QTB) method in molecular simulations of unimolecular dissociation processes. Notably, QTB is aimed in introducing quantum nuclear effects with a com- putational time which is basically the same as in newtonian simulations. At this end we have considered the model fragmentation of CH4 for which an analytical function is present in the literature. Moreover, based on the same model a microcanonical algorithm which monitor zero-point energy of products, and eventually modifies tra- jectories, was recently proposed. We have thus compared classical and quantum rate constant with these different models. QTB seems to correctly reproduce some quantum features, in particular the difference between classical and quantum activation energies, making it a promising method to study unimolecular fragmentation of much complex systems with molecular simulations. The role of QTB thermostat on rotational degrees of freedom is also analyzed and discussed. </p> </div> </div> </div>


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Woo Seung Ham ◽  
Abdul-Muizz Pradipto ◽  
Kay Yakushiji ◽  
Kwangsu Kim ◽  
Sonny H. Rhim ◽  
...  

AbstractDzyaloshinskii–Moriya interaction (DMI) is considered as one of the most important energies for specific chiral textures such as magnetic skyrmions. The keys of generating DMI are the absence of structural inversion symmetry and exchange energy with spin–orbit coupling. Therefore, a vast majority of research activities about DMI are mainly limited to heavy metal/ferromagnet bilayer systems, only focusing on their interfaces. Here, we report an asymmetric band formation in a superlattices (SL) which arises from inversion symmetry breaking in stacking order of atomic layers, implying the role of bulk-like contribution. Such bulk DMI is more than 300% larger than simple sum of interfacial contribution. Moreover, the asymmetric band is largely affected by strong spin–orbit coupling, showing crucial role of a heavy metal even in the non-interfacial origin of DMI. Our work provides more degrees of freedom to design chiral magnets for spintronics applications.


Universe ◽  
2021 ◽  
Vol 7 (1) ◽  
pp. 17
Author(s):  
Nils Andersson

As mature neutron stars are cold (on the relevant temperature scale), one has to carefully consider the state of matter in their interior. The outer kilometre or so is expected to freeze to form an elastic crust of increasingly neutron-rich nuclei, coexisting with a superfluid neutron component, while the star’s fluid core contains a mixed superfluid/superconductor. The dynamics of the star depend heavily on the parameters associated with the different phases. The presence of superfluidity brings new degrees of freedom—in essence we are dealing with a complex multi-fluid system—and additional features: bulk rotation is supported by a dense array of quantised vortices, which introduce dissipation via mutual friction, and the motion of the superfluid is affected by the so-called entrainment effect. This brief survey provides an introduction to—along with a commentary on our current understanding of—these dynamical aspects, paying particular attention to the role of entrainment, and outlines the impact of superfluidity on neutron-star seismology.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Nicolas Boulanger ◽  
Victor Lekeu

Abstract At the free level, a given massless field can be described by an infinite number of different potentials related to each other by dualities. In terms of Young tableaux, dualities replace any number of columns of height hi by columns of height D − 2 − hi, where D is the spacetime dimension: in particular, applying this operation to empty columns gives rise to potentials containing an arbitrary number of groups of D − 2 extra antisymmetric indices. Using the method of parent actions, action principles including these potentials, but also extra fields, can be derived from the usual ones. In this paper, we revisit this off-shell duality and clarify the counting of degrees of freedom and the role of the extra fields. Among others, we consider the examples of the double dual graviton in D = 5 and two cases, one topological and one dynamical, of exotic dualities leading to spin three fields in D = 3.


2010 ◽  
Vol 6 (4) ◽  
pp. 549-569 ◽  
Author(s):  
Anders Anell

AbstractIn 2007, a new wave of local reforms involving choice for the population and privatisation of providers was initiated in Swedish primary care. Important objectives behind reforms were to strengthen the role of primary care and to improve performance in terms of access and responsiveness. The purpose of this article was to compare the characteristics of the new models and to discuss changes in financial incentives for providers and challenges regarding governance from the part of county councils. A majority of the models being introduced across the 21 county councils can best be described as innovative combinations between a comprehensive responsibility for providers and significant degrees of freedom regarding choice for the population. Key financial characteristics of fixed payment and comprehensive financial responsibility for providers may create financial incentives to under-provide care. Informed choices by the population, in combination with reasonably low barriers for providers to enter the primary care market, should theoretically counterbalance such incentives. To facilitate such competition is indeed a challenge, not only because of difficulties in implementing informed choices but also because the new models favour large and/or horizontally integrated providers. To prevent monopolistic behaviour, county councils may have to accept more competition as well as more governance over clinical practice than initially intended.


2014 ◽  
Vol 29 (27) ◽  
pp. 1450155 ◽  
Author(s):  
Goran S. Djordjevic ◽  
Ljubisa Nesic ◽  
Darko Radovancevic

The significant matter for the construction of the so-called no-boundary proposal is the assumption of signature transition, which has been a way to deal with the problem of initial conditions of the universe. On the other hand, results of Loop Quantum Gravity indicate that the signature change is related to the discrete nature of space at the Planck scale. Motivated by possibility of non-Archimedean and/or noncommutative structure of space–time at the Planck scale, in this work we consider the classical, p-adic and (spatial) noncommutative form of a cosmological model with Friedmann–Robertson–Walker (FRW) metric coupled with a self-interacting scalar field.


Sign in / Sign up

Export Citation Format

Share Document