scholarly journals Role of a chameleon field in the presence of variable modified Chaplygin gas in Brans–Dicke theory

2012 ◽  
Vol 90 (2) ◽  
pp. 131-135 ◽  
Author(s):  
Shuvendu Chakraborty ◽  
Ujjal Debnath

In this work, we have considered the Friedmann–Robertson–Walker model of the universe for Brans–Dicke (BD) theory with a BD scalar field as a chameleon field. First we have transformed the field equations and conservation equation from Jordan’s frame to Einstein’s frame. We have shown that, in the presence of a variable modified Chaplygin gas (VMCG), the potential function V and another analytic function f always increase with respect to the BD–chameleon scalar field [Formula: see text] but decrease with time t for pure Chaplygin gas, modified Chaplygin gas, and VMCG models.

2015 ◽  
Vol 24 (02) ◽  
pp. 1550017 ◽  
Author(s):  
S. D. Katore ◽  
S. P. Hatkar ◽  
S. N. Bayaskar

In the present paper, the role of modified chaplygin gas models in relation with the Bianchi type VI0 universe is examined. For obtaining complete solution of Einstein field equations, it is assumed that expansion scalar in the model is proportional to shear scalar and equation of state of this modified model is valid from the radiation era to the Lambda cold dark matter (ΛCDM) model. State finder and various physical, geometrical properties have also been discussed.


2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
H. B. Benaoum

Modified Chaplygin gas as an exotic fluid has been introduced by H. B. Benaoum (2002). Essential features of the modified Chaplygin gas as a cosmological model are discussed. Observational constraints on the parameters of the model have been included. The relationship between the modified Chaplygin gas and a homogeneous minimally coupled scalar field is reevaluated by constructing its self-interacting potential. In addition, we study the role of the tachyonic field in the modified Chaplygin gas cosmological model and the mapping between scalar field and tachyonic field is also considered.


2017 ◽  
Vol 32 (28) ◽  
pp. 1750151 ◽  
Author(s):  
M. Sharif ◽  
Aisha Siddiqa

We study the evolution of viscous modified Chaplygin gas (MCG) interacting with f(R, T) gravity in flat FRW universe, where T is the trace of energy–momentum tensor. The field equations are formulated for a particular model f(R, T) = R + 2[Formula: see text]T and constraints for the conservation of energy–momentum tensor are obtained. We investigate the behavior of total energy density, pressure and equation of state (EoS) parameter for emergent, intermediate as well as logamediate scenarios of the universe with two interacting models. It is found that the EoS parameter lies in the matter-dominated or quintessence era for all the three scenarios while the bulk viscosity enhances the expansion for the intermediate and logamediate scenarios.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ali Osman Yılmaz ◽  
Ertan Güdekli

AbstractWe investigate Friedmann–Lamaitre–Robertson–Walker (FLRW) models with modified Chaplygin gas and cosmological constant, using dynamical system methods. We assume $$p=(\gamma -1)\mu -\dfrac{A}{\mu ^\alpha }$$ p = ( γ - 1 ) μ - A μ α as equation of state where $$\mu$$ μ is the matter-energy density, p is the pressure, $$\alpha$$ α is a parameter which can take on values $$0<\alpha \le 1$$ 0 < α ≤ 1 as well as A and $$\gamma$$ γ are positive constants. We draw the state spaces and analyze the nature of the singularity at the beginning, as well as the fate of the universe in the far future. In particular, we address the question whether there is a solution which is stable for all the cases.


2019 ◽  
Vol 97 (8) ◽  
pp. 880-894
Author(s):  
M. Zubair ◽  
Farzana Kousar ◽  
Saira Waheed

In this paper, we explore the nature of scalar field potential in [Formula: see text] gravity using a well-motivated reconstruction scheme for flat Friedmann–Robertson–Walker (FRW) geometry. The beauty of this scheme lies in the assumption that the Hubble parameter can be expressed in terms of scalar field and vice versa. Firstly, we develop field equations in this gravity and present some general explicit forms of scalar field potential via this technique. In the first case, we take the de Sitter universe model and construct some field potentials by taking different cases for the coupling function. In the second case, we derive some field potentials using the power law model in the presence of different matter sources like barotropic fluid, cosmological constant, and Chaplygin gas for some coupling functions. From graphical analysis, it is concluded that using some specific values of the involved parameters, the reconstructed scalar field potentials are cosmologically viable in both cases.


2015 ◽  
Vol 24 (08) ◽  
pp. 1550059 ◽  
Author(s):  
Jian-bin Chen ◽  
Zhen-qi Liu ◽  
Lili Xing

We investigate the cosmological constraints on the variable modified Chaplygin gas (VMCG) model from the latest observational data: Union2 dataset of Type Ia supernovae (SNIa), the observational Hubble data (OHD), the baryon acoustic oscillations (BAO) and the cosmic microwave background (CMB) data. By using the Markov chain Monte Carlo (MCMC) method, we obtain the mean values of parameters in the flat model: [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text] and [Formula: see text]. Furthermore, we investigate the thermodynamical properties of VMCG model at apparent horizon, event horizon and particle horizon respectively.


Sign in / Sign up

Export Citation Format

Share Document