scholarly journals Higher spins from exotic dualisations

2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Nicolas Boulanger ◽  
Victor Lekeu

Abstract At the free level, a given massless field can be described by an infinite number of different potentials related to each other by dualities. In terms of Young tableaux, dualities replace any number of columns of height hi by columns of height D − 2 − hi, where D is the spacetime dimension: in particular, applying this operation to empty columns gives rise to potentials containing an arbitrary number of groups of D − 2 extra antisymmetric indices. Using the method of parent actions, action principles including these potentials, but also extra fields, can be derived from the usual ones. In this paper, we revisit this off-shell duality and clarify the counting of degrees of freedom and the role of the extra fields. Among others, we consider the examples of the double dual graviton in D = 5 and two cases, one topological and one dynamical, of exotic dualities leading to spin three fields in D = 3.

2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Ioseph Buchbinder ◽  
Evgeny Ivanov ◽  
Nikita Zaigraev

Abstract We present, for the first time, the complete off-shell 4D,$$ \mathcal{N} $$ N = 2 superfield actions for any free massless integer spin s ≥ 2 fields, using the $$ \mathcal{N} $$ N = 2 harmonic super-space approach. The relevant gauge supermultiplet is accommodated by two real analytic bosonic superfields $$ {h}_{\alpha \left(s-1\right)\dot{\alpha}\left(s-1\right)}^{++} $$ h α s − 1 α ̇ s − 1 + + , $$ {h}_{\alpha \left(s-2\right)\dot{\alpha}\left(s-2\right)}^{++} $$ h α s − 2 α ̇ s − 2 + + and two conjugated complex analytic spinor superfields $$ {h}_{\alpha \left(s-1\right)\dot{\alpha}\left(s-1\right)}^{+3} $$ h α s − 1 α ̇ s − 1 + 3 , $$ {h}_{\alpha \left(s-2\right)\dot{\alpha}\left(s-1\right)}^{+3} $$ h α s − 2 α ̇ s − 1 + 3 , where α(s) := (α1. . . αs),$$ \dot{\alpha} $$ α ̇ (s) := ($$ \dot{\alpha} $$ α ̇ 1. . .$$ \dot{\alpha} $$ α ̇ s). Like in the harmonic superspace formulations of $$ \mathcal{N} $$ N = 2 Maxwell and supergravity theories, an infinite number of original off-shell degrees of freedom is reduced to the finite set (in WZ-type gauge) due to an infinite number of the component gauge parameters in the analytic superfield parameters. On shell, the standard spin content (s,s−1/2,s−1/2,s−1) is restored. For s = 2 the action describes the linearized version of “minimal” $$ \mathcal{N} $$ N = 2 Einstein supergravity.


2019 ◽  
Author(s):  
Riccardo Spezia ◽  
Hichem Dammak

<div> <div> <div> <p>In the present work we have investigated the possibility of using the Quantum Thermal Bath (QTB) method in molecular simulations of unimolecular dissociation processes. Notably, QTB is aimed in introducing quantum nuclear effects with a com- putational time which is basically the same as in newtonian simulations. At this end we have considered the model fragmentation of CH4 for which an analytical function is present in the literature. Moreover, based on the same model a microcanonical algorithm which monitor zero-point energy of products, and eventually modifies tra- jectories, was recently proposed. We have thus compared classical and quantum rate constant with these different models. QTB seems to correctly reproduce some quantum features, in particular the difference between classical and quantum activation energies, making it a promising method to study unimolecular fragmentation of much complex systems with molecular simulations. The role of QTB thermostat on rotational degrees of freedom is also analyzed and discussed. </p> </div> </div> </div>


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Woo Seung Ham ◽  
Abdul-Muizz Pradipto ◽  
Kay Yakushiji ◽  
Kwangsu Kim ◽  
Sonny H. Rhim ◽  
...  

AbstractDzyaloshinskii–Moriya interaction (DMI) is considered as one of the most important energies for specific chiral textures such as magnetic skyrmions. The keys of generating DMI are the absence of structural inversion symmetry and exchange energy with spin–orbit coupling. Therefore, a vast majority of research activities about DMI are mainly limited to heavy metal/ferromagnet bilayer systems, only focusing on their interfaces. Here, we report an asymmetric band formation in a superlattices (SL) which arises from inversion symmetry breaking in stacking order of atomic layers, implying the role of bulk-like contribution. Such bulk DMI is more than 300% larger than simple sum of interfacial contribution. Moreover, the asymmetric band is largely affected by strong spin–orbit coupling, showing crucial role of a heavy metal even in the non-interfacial origin of DMI. Our work provides more degrees of freedom to design chiral magnets for spintronics applications.


Universe ◽  
2021 ◽  
Vol 7 (1) ◽  
pp. 17
Author(s):  
Nils Andersson

As mature neutron stars are cold (on the relevant temperature scale), one has to carefully consider the state of matter in their interior. The outer kilometre or so is expected to freeze to form an elastic crust of increasingly neutron-rich nuclei, coexisting with a superfluid neutron component, while the star’s fluid core contains a mixed superfluid/superconductor. The dynamics of the star depend heavily on the parameters associated with the different phases. The presence of superfluidity brings new degrees of freedom—in essence we are dealing with a complex multi-fluid system—and additional features: bulk rotation is supported by a dense array of quantised vortices, which introduce dissipation via mutual friction, and the motion of the superfluid is affected by the so-called entrainment effect. This brief survey provides an introduction to—along with a commentary on our current understanding of—these dynamical aspects, paying particular attention to the role of entrainment, and outlines the impact of superfluidity on neutron-star seismology.


2010 ◽  
Vol 6 (4) ◽  
pp. 549-569 ◽  
Author(s):  
Anders Anell

AbstractIn 2007, a new wave of local reforms involving choice for the population and privatisation of providers was initiated in Swedish primary care. Important objectives behind reforms were to strengthen the role of primary care and to improve performance in terms of access and responsiveness. The purpose of this article was to compare the characteristics of the new models and to discuss changes in financial incentives for providers and challenges regarding governance from the part of county councils. A majority of the models being introduced across the 21 county councils can best be described as innovative combinations between a comprehensive responsibility for providers and significant degrees of freedom regarding choice for the population. Key financial characteristics of fixed payment and comprehensive financial responsibility for providers may create financial incentives to under-provide care. Informed choices by the population, in combination with reasonably low barriers for providers to enter the primary care market, should theoretically counterbalance such incentives. To facilitate such competition is indeed a challenge, not only because of difficulties in implementing informed choices but also because the new models favour large and/or horizontally integrated providers. To prevent monopolistic behaviour, county councils may have to accept more competition as well as more governance over clinical practice than initially intended.


2014 ◽  
Vol 26 (06) ◽  
pp. 1450009
Author(s):  
Joachim Kupsch

Canonical transformations (Bogoliubov transformations) for fermions with an infinite number of degrees of freedom are studied within a calculus of superanalysis. A continuous representation of the orthogonal group is constructed on a Grassmann module extension of the Fock space. The pull-back of these operators to the Fock space yields a unitary ray representation of the group that implements the Bogoliubov transformations.


Author(s):  
Mathias Fink

Time-reversal invariance can be exploited in wave physics to control wave propagation in complex media. Because time and space play a similar role in wave propagation, time-reversed waves can be obtained by manipulating spatial boundaries or by manipulating time boundaries. The two dual approaches will be discussed in this paper. The first approach uses ‘time-reversal mirrors’ with a wave manipulation along a spatial boundary sampled by a finite number of antennas. Related to this method, the role of the spatio-temporal degrees of freedom of the wavefield will be emphasized. In a second approach, waves are manipulated from a time boundary and we show that ‘instantaneous time mirrors’, mimicking the Loschmidt point of view, simultaneously acting in the entire space at once can also radiate time-reversed waves.


Author(s):  
Emanuele Roccia ◽  
Marco G. Genoni ◽  
Luca Mancino ◽  
Ilaria Gianani ◽  
Marco Barbieri ◽  
...  

AbstractThe physics that governs quantum monitoring may involve other degrees of freedom than the ones initialised and controlled for probing. In this context we address the simultaneous estimation of phase and dephasing characterizing a dispersive medium, and we explore the role of frequency correlations within a photon pair generated via parametric down-conversion, when used as a probe for the medium. We derive the ultimate quantum limits on the estimation of the two parameters, by calculating the corresponding quantum Cramér-Rao bound; we then consider a feasible estimation scheme, based on the measurement of Stokes operators, and address its absolute performances in terms of the correlation parameters, and, more fundamentally, of the role played by correlations in the simultaneous achievability of the quantum Cramér- Rao bounds for each of the two parameters.


Joint Rail ◽  
2004 ◽  
Author(s):  
Mohammad Durali ◽  
Mohammad Mehdi Jalili Bahabadi

In this article a train model is developed for studying train derailment in passing through bends. The model is three dimensional, nonlinear, and considers 43 degrees of freedom for each wagon. All nonlinear characteristics of suspension elements as well as flexibilities of wagon body and bogie frame, and the effect of coupler forces are included in the model. The equations of motion for the train are solved numerically for different train conditions. A neural network was constructed as an element in solution loop for determination of wheel-rail contact geometry. Derailment factor was calculated for each case. The results are presented and show the major role of coupler forces on possible train derailment.


Sign in / Sign up

Export Citation Format

Share Document