Wind set-up of water level in a river

2011 ◽  
Vol 59 (2) ◽  
pp. 317-333 ◽  
Author(s):  
Zygmunt Meyer
Keyword(s):  
2002 ◽  
pp. 103-109 ◽  
Author(s):  
Miroljub Djorovic ◽  
Ljubomir Letic

Observation of underground water level in the area of "Jasensko-Belilo", which belongs to the Forest Estate "Sremska Mitrovica", started in 1999. The measurements were performed by means of 2 piezometers set up approximately perpendicularly to the river Sava, forming profile number 1 (Fig.1). The results of these measurements (Fig. 2, 3) show a significant lowering of groundwater level in 2000. The reason is most likely the unfavorable rainfall amount and distribution during that year (Table 2). A much better situation was during 2001 when the minimal groundwater level was up to 2 meters and it was considered to be the result of a favorable amount of rainfall and its distribution during the year (Tables 2, 3). It was noticed that Carpinus betulus appears instead of flowering ash (Fraxinus ornus), which is a good sign that generally the level of underground water is lowering. Also, the phenomenon that pedunculate oak (Quercus robur) gradually loses its natural regeneration capability also confirms the trend of lowering underground water level. If this trend continues, oak will be in a very near future naturally substituted by less valuable species, probably Turkey oak (Quercus cerris). If groundwater wells along the river Sava reach the vicinity of this area, which is a plan for the Belgrade city water supply, the trend of groundwater table lowering will be even more expressed and it will certainly endanger the existence of all valuable forest species in this area.


In the agriculture sector Continuous water extraction from the earth decreases water level owing to the slow arrival of a lot of soil in the areas of irrigated land. This is also owing to the unexpected use of water, which leads to a substantial quantity of waste. This automatic irrigation system is used for this purpose. Power comes from photovoltaic cells using solar energy. Therefore it is not necessary to rely on erratic business energy. The circuit consists of sensor components constructed with op-amp IC. Op-amps are set up as a comparator here. In the soil are placed two steep copper cables to see if the soil is moist or dry. The entire system is controlled by a microcontroller. IC which contacts are used to turn the engine ON, the engine is switched OFF when the ground is moist. The above task is carried out by the microcontroller, which receives the signal from the sensors and which functions under software control that can be stored on the microcontroller's Rom. The pump situation is shown on a 16X2 LCD interfacing to the microcontroller. The ON / OFF pump situation is shown. The project can also be strengthened through its interfaces with a GSM modem, which allows control of the engine switching


2021 ◽  
Vol 9 ◽  
Author(s):  
Qingyuan Yang ◽  
Tonghuan Liu ◽  
Jingjing Zhai ◽  
Xiekang Wang

In 2018, a flash flood occurred in the Zhongdu river, which lies in Yibin, Sichuan province of China. The flood caused many casualties and significant damage to people living nearby. Due to the difficulty in predicting where and when flash floods will happen, it is nearly impossible to set up monitors in advance to detect the floods in detail. Field investigations are usually carried out to study the flood propagation and disaster-causing mechanism after the flood’s happening. The field studies take the relic left by the flash flood to deduce the peak level, peak discharge, bed erosion, etc. and further revel the mechanism between water and sediment transport during the flash flood This kind of relic-based study will generate bigger errors in regions with great bed deformation. In this study, we come up with numerical simulations to investigate the flash flood that happened in the Zhongdu river. The simulations are based on two-dimensional shallow water models coupled with sediment transport and bed deformation models. Based on the real water level and discharge profile measured by a hydrometric station nearby, the numerical simulation reproduced the flash flood in the valley. The results show the flood coverage, water level variation, and velocity distribution during the flood. The simulation offers great help in studying the damage-causing process. Furthermore, simulations without considering sediment transport are also carried out to study the impact of bed erosion and sedimentation. The study proved that, without considering bed deformation, the flood may be greatly underestimated, and the sediment lying in the valley has great impact on flood power.


2011 ◽  
Vol 328-330 ◽  
pp. 1872-1875
Author(s):  
Guo Yi Zhou ◽  
Wen Sheng He ◽  
Huai Chun Zhou

The deficiencies of drum water level control system and unstable combustion of supercharged boiler could result some serious accident such as water level fluctuating greatly, pipes in furnace overheating and bursting, boiler loss water. In order to solve the problems, flame detect system was used to get flame images of boiler's furnace, and radiation energy signal was introduced into drum water level control system to add one auxiliary control loop of combustion side. The new control strategy was established and simulation model was set up. The simulation results show that the new control system could adjust feed water within 20s, and eliminated the disturbance of water level within 60s by way of monitoring radiation energy signal, the fluctuating range was also decreased significantly.


Author(s):  
Yu Yao ◽  
Edmond Y. M. Lo ◽  
Zhenhua Huang ◽  
Stephen G. Monismith

Wave action has been the primary focus of near-shore hydrodynamic studies over decades. The wave-induced set-up due to wave breaking is one of the important factors to consider in determining both water level and mass transport above the reef-top, which has ecological as well as engineering significance. Previous investigations into reef hydrodynamics (including laboratory experiments, field investigations, theoretical analysis and numerical simulations) focused mainly on wave-induced set-up on reefs with a horizontal reef-top (Gourlay, 1996. J. Coastal Eng. 27:161–193). It has been observed that a ridge (reef crest) may be present at the reef edge, but so far we are not aware of any published studies on the effects of this type of ridge on the wave-induced set-up over the reef-top. To understand the role of the ridge in wave-breaking mechanism and wave-induced set-up over the reef, a series of experiments were carried out in a wave flume of 36m long and 0.55m wide, with idealized reef-ridge models being installed at the reef edge to simulate fringing reefs with rectangle ridges. The surface elevations at four locations over the reef were measured with Ultralab sensors (General Acoustics), revealing the variation of wave-induced set-up along the reef. Experimental results are reported for two water depths and eighteen regular wave conditions. Also discussed are the effects of the ridge width on the wave-induced set-up. The focus of this paper will be given to the comparison of wave-induced set-ups with and without the rectangular ridges. Preliminary analysis shows that the ridge controls the water level above the reef-top in a way similar to that a broad crest weir controls the water level in open channel flows. Furthermore, the presence of the ridge is found to alter significantly the wave transformation process near the reef edge, especially the strength of the reflected waves and the locations of breakers. Experiments also show that the wave-induced set-up over reef-top with a ridge is generally much larger than that without a ridge. Finally, an attempt is made to introduce a new dimensionless parameter in order to take the ridge configuration into consideration and achieve a better agreement between experiments and predictions when ridges are present.


2019 ◽  
Vol 19 (3) ◽  
pp. 337-347
Author(s):  
Nguyen Nguyen Ngoc The The ◽  
Duong Cong Dien ◽  
Tran Thanh Tung

The central coast of Vietnam is frequently prone to storms and floods. Aside from wind damages during storms, the effect of storm surges, which includes wave set-up, on the coast and coastal infrastructures is very severe. Therefore calculation and prediction of wave set-up and storm surges are significant, both scientifically and practically, to serve as scientific bases for sustainable coastal planning, development and protection. This paper presents the study results on nearshore wave propagation and transformation, as well as the distribution of wave set-up during storms in the coastal area of Cua Dai, Hoi An, using SWAN and SWASH models. The models are thoroughly tested against wave and water level data series collected during a campaign in the project framework. The simulation results show the overall picture of the nearshore wave field and the surge height induced by waves during a storm event along Cua Dai, Hoi An coast. The research output also indicates that wave set-up contributes an important part to the extreme water level of the local nearshore area during storms.


2011 ◽  
Vol 1 (32) ◽  
pp. 39
Author(s):  
Hitoshi Tanaka ◽  
Hanako Nakura ◽  
Xuan Tinh Nguyen

It is known that in the coastal area facing the Sea of Japan, winter storm is very severe due to strong wind from Siberia and the wave height attains to 6-7m during this period. Hence water level rise in a river entrance due to wave set-up may exceed 1m, which is considerably higher than average tidal amplitude in this region, 0.2-0.5m. However, due to much influence of complicated geographical processes on wave set-up height in a river mouth, quantitative investigations have hardly been done until now. In addition, the water level in a river mouth is complicatedly interacted among tidal motion, river discharge, ocean waves and so on, and hence it is difficult to make highly precise estimation. In this study, water level rise in the mouth of the Yoneshiro River in Akita Prefecture, Japan is investigated. Geographical features of the river mouth are greatly dependent on seasonal variation of major physical forces. Therefore, the characteristic of wave set-up is assumed to be different according to the season, and hence monthly variation of wave set-up is quantified. It is found in winter, the water level rise by wave set-up becomes approximately 10% of the deep water wave height, whereas this ratio decreases rapidly in summer due to flushing of sediment around the river mouth caused by frequent occurrence of floods.


Author(s):  
P. A. Fokker ◽  
J. Gunnink ◽  
G. de Lange ◽  
O. Leeuwenburgh ◽  
E. F. van der Veer

Abstract. The Southern part of the Flevopolder has shown considerable subsidence since its reclamation in 1967. We have set up an integrated method to use subsidence data, water level data and forward models for compaction, oxidation and the resulting subsidence to estimate the driving parameters. Our procedure, an Ensemble Smoother with Multiple Data Assimilation, is very fast and gives insight into the variability of the estimated parameters and the correlations between them. We used two forward models: the Koppejan model and the Bjerrum model. In first instance, the Bjerrum model seems to perform better than the Koppejan model. This must, however, be corroborated with more elaborate parameter estimation exercises in which in particular the water level development is taken into account.


2011 ◽  
Vol 1 (32) ◽  
pp. 22 ◽  
Author(s):  
Philip Treloar ◽  
David Taylor ◽  
Paul Prenzler

Moreton Bay is a large coastal embayment on the south-east Queensland coast which is surrounded by the urbanised areas of greater Brisbane on its western and southern shorelines. It is protected from the open coast by a number of islands, including South Stradbroke, North Stradbroke and Moreton Islands. Tropical cyclones occasionally track far enough south to cause significant damage to south-east Queensland due to flooding, winds, waves and elevated ocean water levels. Distant tropical cyclones which may be several hundred kilometres north of Moreton Bay have been known to cause storm surge, high waves and erosion inside Moreton Bay. These events generally do not generate gale force winds within Moreton Bay, but can generate large ocean swell waves. It has been identified that the wave conditions generated from distant cyclones can cause a variation in water levels inside Moreton Bay. A detailed study was undertaken to investigate the regional wave set-up process which affects Moreton Bay. The simulation of the residual water levels within Moreton Bay using a coupled hydrodynamic and wave model system developed for this study is considerably more accurate than applying a hydrodynamic model alone and explains water level anomalies that have a tidal frequency. The paper discusses the physical process of regional wave set-up inside a large embayment, analysis of observed residual water level and also the modelling study undertaken to quantify the influence of waves on storm tide levels inside Moreton Bay. The storm tide hazard study for the Moreton Bay Councils included the effects of regional wave set-up in the specification of design water levels.


Sign in / Sign up

Export Citation Format

Share Document