tidal motion
Recently Published Documents


TOTAL DOCUMENTS

94
(FIVE YEARS 8)

H-INDEX

13
(FIVE YEARS 0)

2021 ◽  
Vol 9 (6) ◽  
pp. 669
Author(s):  
Jingang Han ◽  
Xu Li ◽  
Tianhao Tang

With the rapid development of renewable energy technology, marine current energy is treated as the most desirable form of ocean energies. Due to the nature of marine current energy, simple structure, high reliability, and good control performance are the primary consideration for the energy management strategy. This paper proposes an energy management control strategy based on rules to compensate for the fluctuating power caused by tidal motion. The hybrid energy storage system composed of vanadium redox flow battery (VRB) is applied to reallocate power. Supercapacitor banks (SCBs) are applied as the auxiliary power source to absorb or release the required power according to energy management strategy based on control rules in the marine current power system. SCB makes the grid-connected power track the grid command power and also improves the operational efficiency of the vanadium redox flow battery (VRB). VRB compensates for the low-frequency fluctuating power caused by tidal motion and plays an important role in compensating for the difference in power between the grid-connected power and the grid command power to ensure the reliability of the marine current power system. A simulation model of a 3 MW marine current power system is built to verify the effectiveness of the energy management strategy based on the real marine current velocity data.


2021 ◽  
Author(s):  
Solène Lejosne ◽  
Naomi Maruyama ◽  
Richard S. Selesnick ◽  
Mariangel Fedrizzi

<p>Neutral winds have long been viewed as a driver of Jupiter’s radiation belts. On the other hand, the impact of thermospheric neutral winds in driving plasma dynamics in the Earth’s inner magnetosphere is yet to be quantified. We now have the appropriate combination of data and physics-based model to address this fundamental science question.</p><p>In this work, we revisit the local time asymmetry of the equatorial electron intensity observed in the innermost radiation belt (L=1.30). We combine in-situ field and particle observations, together with a physics-based coupled model, RCM-CTIPe, to determine whether the dynamo electric fields produced by tidal motion of upper atmospheric winds flowing across the Earth’s magnetic field lines are the main drivers of the drift-shell distortion observed in the Earth’s inner radiation belt.</p><p>Our results provide a first quantification of the contribution of the neutral wind in transporting the trapped energetic particles of the Earth’s inner radiation belt.</p>


2020 ◽  
Vol 9 (1) ◽  
pp. 27
Author(s):  
Hitoshi Tanaka ◽  
Nguyen Xuan Tinh ◽  
Xiping Yu ◽  
Guangwei Liu

A theoretical and numerical study is carried out to investigate the transformation of the wave boundary layer from non-depth-limited (wave-like boundary layer) to depth-limited one (current-like boundary layer) over a smooth bottom. A long period of wave motion is not sufficient to induce depth-limited properties, although it has simply been assumed in various situations under long waves, such as tsunami and tidal currents. Four criteria are obtained theoretically for recognizing the inception of the depth-limited condition under waves. To validate the theoretical criteria, numerical simulation results using a turbulence model as well as laboratory experiment data are employed. In addition, typical field situations induced by tidal motion and tsunami are discussed to show the usefulness of the proposed criteria.


Geosciences ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 463
Author(s):  
Ilya Chernov ◽  
Alexey Tolstikov

The White Sea is a small shallow semi-closed sea in the North-West of Russia. It is strongly affected by induced tides, so the tidal motion dominates in the sea. Sea ice is seasonal and the water salinity is less than in the neighbouring Barents sea due to strong river discharge. We review the sources of in-situ and satellite data that are available for the sea, and describe those few numerical models, together with the challenges that are faced. We focus on the large-scale circulation and thermohaline fields, but also cover sea ice, river runoff, and pelagic biogeochemical data.


Author(s):  
David George Bowers ◽  
Emyr Martyn Roberts

The tide is the greatest synchronized movement of matter on our planet. Every drop of seawater takes part in tidal motion, driven by the gravitational pull of the Moon and Sun. Tides: A Very Short Introduction blends clear explanations of well-known tidal phenomena with recent insights into the dynamics of the deep ocean and coastal seas, considering the tide’s nature and causes, its observation and prediction, and unusual tides and their relevance. It explains the importance of ocean tidal mixing as a key part of our planet’s climate-control system and for enhancing biological productivity. It also considers the effects of tidal processes beyond our own planet on the moons of Jupiter and Saturn.


2019 ◽  
Vol 23 (10) ◽  
pp. 4309-4322
Author(s):  
Yanwen Xu ◽  
Antonius J. F. Hoitink ◽  
Jinhai Zheng ◽  
Karl Kästner ◽  
Wei Zhang

Abstract. Knowledge of the processes governing salt intrusion in estuaries is important, since it influences the eco-environment of estuaries as well as its water resource potential in many ways. Analytical models of salinity variation offer a simple and efficient method for studying salt intrusion in estuaries. In this paper, an unsteady analytical solution is presented to predict the spatio-temporal variation in salinity in convergent estuaries. It is derived from a one-dimensional advection–diffusion equation for salinity, adopting a constant mixing coefficient and a single-frequency tidal wave, which can directly reflect the influence of the tidal motion and the interaction between the tide and runoff. The deduced analytical solution is illustrated with an application to the Humen estuary of the Pearl River Delta (PRD) and proves to be an efficient and accurate approach for predicting the salt intrusion in convergent estuaries. The unsteady analytical solution is tested against observations from six study sites to validate its capability to predict intratidal variation in salt intrusion. The results show that the proposed unsteady analytical solution can be successfully used to reproduce the spatial distribution and temporal processes governing salinity dynamics in convergent, well-mixed estuaries. The proposed method provides a quick and convenient approach for deciding on water-fetching methods to make good use of water resources.


2019 ◽  
Author(s):  
Sebastian H. R. Rosier ◽  
G. Hilmar Gudmundsson

Abstract. An extensive network of GPS sites on the Filchner-Ronne Ice Shelf and adjoining ice streams show strong tidal modulation of horizontal ice flow at a range of frequencies. A particularly strong (horizontal) response is found at the fortnightly (Msf) frequency. Since this tidal constituent is absent in the (vertical) tidal forcing, this observation implies the action of some nonlinear mechanism. Another striking aspect is the strong amplitude of the flow perturbation, causing a periodic reversal in the direction of ice shelf flow in some areas, and a 10–20 % change in speed at grounding lines. No model has yet been able to reproduce the quantitative aspects of the observed tidal modulation on the Filchner-Ronne Ice Shelf. The cause of the tidal response has therefore remained an enigma, indicating a serious limitation in our current understanding of the mechanics of large-scale ice flow. A further limitation of previous studies is that they have all focused on isolated regions and interactions between different areas have, therefore, not been fully accounted for. Here, we conduct the first large-scale ice-flow modelling study to explore these processes using a viscoelastic rheology and realistic geometry of the entire Filchner-Ronne ice shelf, where the best observations of tidal response are available. We evaluate all the relevant mechanisms that have hitherto been put forward to explain how tides might affect ice-shelf flow and compare our results with observational data. We conclude that, while some are able to generate the correct general qualitative aspects of the tidally-induced perturbations in ice flow, most of these mechanisms must be ruled out as being the primary cause of the large observed nonlinear response. We find that only tidally-induced lateral migration of grounding lines can generate a sufficiently strong long-periodic Msf response on the ice shelf to match observations. Furthermore, we show that the observed short-periodic diurnal tidal motion, causing twice-daily flow reversals at the ice front, can be generated through a purely elastic response to basin-wide tidal perturbations in the ice shelf slope. This model also allows us to quantify the effect of tides on mean ice flow and we find that the Filchner-Ronne Ice Shelf flows on average ~ 21 % faster than it would in the absence of large ocean tides.


Author(s):  
Kuifeng ZHAO ◽  
Jing YUAN ◽  
Philip L-F LIU

In tropical regions, intense solar radiation on seawall can lead to a high surface temperature, which far exceeds common marine species’ tolerable limits. This is a primary reason for low biodiversity on Singapore’s seawalls and therefore must be considered in eco-engineering practices. The intertidal zone of a seawall is periodically submerged and cooled by the tidal motion, and therefore can support a local ecosystem. The objective of this research is to establish a predictive model for surface temperature of seawall’s intertidal zone and use this model to study how local biodiversity is affected by the occurrence of high temperature.


2018 ◽  
Vol 6 (3) ◽  
pp. 104 ◽  
Author(s):  
Rodrigo Duran ◽  
Lucy Romeo ◽  
Jonathan Whiting ◽  
Jason Vielma ◽  
Kelly Rose ◽  
...  

The Department of Energy’s (DOE’s) National Energy Technology Laboratory’s (NETL’s) Blowout and Spill Occurrence Model (BLOSOM), and the National Oceanic and Atmospheric Administration’s (NOAA’s) General NOAA Operational Modeling Environment (GNOME) are compared. Increasingly complex simulations are used to assess similarities and differences between the two models’ components. The simulations presented here are forced by ocean currents from a Finite Volume Community Ocean Model (FVCOM) implementation that has excellent skill in representing tidal motion, and with observed wind data that compensates for a coarse vertical ocean model resolution. The comprehensive comparison between GNOME and BLOSOM presented here, should aid modelers in interpreting their results. Beyond many similarities, aspects where both models are distinct are highlighted. Some suggestions for improvement are included, e.g., the inclusion of temporal interpolation of the forcing fields (BLOSOM) or the inclusion of a deflection angle option when parameterizing wind-driven processes (GNOME). Overall, GNOME and BLOSOM perform similarly, and are found to be complementary oil spill models. This paper also sheds light on what drove the historical Point Wells spill, and serves the additional purpose of being a learning resource for those interested in oil spill modeling. The increasingly complex approach used for the comparison is also used, in parallel, to illustrate the approach an oil spill modeler would typically follow when trying to hindcast or forecast an oil spill, including detailed technical information on basic aspects, like choosing a computational time step. We discuss our successful hindcast of the 2003 Point Wells oil spill that, to our knowledge, had remained unexplained. The oil spill models’ solutions are compared to the historical Point Wells’ oil trajectory, in time and space, as determined from overflight information. Our hindcast broadly replicates the correct locations at the correct times, using accurate tide and wind forcing. While the choice of wind coefficient we use is unconventional, a simplified analytic model supported by observations, suggests that it is justified under this study’s circumstances. We highlight some of the key oceanographic findings as they may relate to other oil spills, and to the regional oceanography of the Salish Sea, including recommendations for future studies.


Sign in / Sign up

Export Citation Format

Share Document