ArF laser photolytic deposition and thermal modification of an ultrafine chlorohydrocarbon

2010 ◽  
Vol 64 (5) ◽  
Author(s):  
Josef Pola ◽  
Anna Galíková ◽  
Jan Šubrt ◽  
Akihiko Ouchi

AbstractMW ArF laser irradiation of gaseous cis-dichloroethene results in fast decomposition of this compound and in deposition of solid ultrafine Cl- and H-containing carbonaceous powder which is of interest due to its sub-microscopic structure and possible reactive modification of the C-Cl bonds. The product was characterized by electron microscopy, and FTIR and Raman spectra and it was revealed that HCl, H2, and C/H fragments are lost and graphitic features are adopted upon heating to 700°C.

2008 ◽  
Vol 600-603 ◽  
pp. 267-272 ◽  
Author(s):  
Hidekazu Tsuchida ◽  
Isaho Kamata ◽  
Masahiro Nagano

Defect formation in 4H-SiC(0001) and (000-1) epitaxy is investigated by grazing incidence synchrotron reflection X-ray topography and transmission electron microscopy. Frank-type faults, which are terminated by four Frank partials with a 1/4[0001] type Burgers vector with the same sign on four different basal planes, are confirmed to be formed by conversion of a 1c threading edge dislocation (TSD) in the substrate as well as simultaneous generation of a 1c TSD during epitaxy. The collation between the topography appearance and the microscopic structure and the variety of Frank faults are shown. Formation of carrot defects and threading dislocation clusters are also investigated.


2012 ◽  
Vol 1477 ◽  
Author(s):  
Marco A. Zepeda ◽  
Michel Picquart ◽  
Emmanuel Haro-Poniatowski

ABSTRACTThe Laser induced oxidation process of bismuth was investigated using Raman spectroscopy. Upon laser irradiation (λ = 532 nm) pure Bismuth was transformed gradually into Bi2O3. Raman spectra of the samples showed the characteristics peaks for pure Bi located at 71 cm-1 and 96 cm-1. The oxidation process was monitored by Raman spectra with four additional bands located at about 127 cm-1, 241 cm-1, 313 cm-1 and 455 cm-1. Maintaining constant the exposure time of irradiation, the intensity of these bands depended on laser irradiation power. The presence of Bi2O3 in the sample was confirmed through by energy dispersion spectroscopy (EDS).


1992 ◽  
Vol 7 (3) ◽  
pp. 725-733 ◽  
Author(s):  
S.R. Nishitani ◽  
S. Yoshimura ◽  
H. Kawata ◽  
M. Yamaguchi

Deposits of nitrides and oxides of Al and Ti have been produced by laser irradiation of Al and Ti targets in air, N2, and NH3 + N2 gases. Microstructure and constituent phases in these deposits have been examined by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and x-ray diffractometry (XRD). The distribution of metalloid elements has been investigated by Rutherford backscattering spectrometry (RBS). On the basis of the results of these examinations, the nitride and oxide deposits have been shown to be formed by reactions between ambient gas and metal-melt or metal-vapor which take place during pulse laser irradiation.


1983 ◽  
Vol 29 ◽  
Author(s):  
M. I. Birjega ◽  
C. A. Constantin ◽  
M. Dinescu ◽  
I. Th. Florescu ◽  
I. N. Mihailescu ◽  
...  

ABSTRACTThe crystallization and oxidation processes of thin, free-standing (FS), sputtered Cr films under the action of cw CO2 laser irradiation were studied by transmission electron microscopy (TEM) and transmission electron diffraction (TED). The crystallization is induced at power densities above 28.65 W cm−2, dwell time of 1 s, and the oxidation at power densities of 48.1 W cm−2 and longer dwell times.


2017 ◽  
Vol 66 (5) ◽  
pp. 328-336 ◽  
Author(s):  
Hiroyuki Iwata ◽  
Daisuke Kawaguchi ◽  
Hiroyasu Saka

1997 ◽  
Vol 12 (12) ◽  
pp. 3206-3209 ◽  
Author(s):  
V. Oliveira ◽  
R. Vilar ◽  
O. Conde ◽  
P. Freitas

Al2O3−34 wt.% TiC ceramics have been machined with a KrF (248 nm) excimer laser under normal atmosphere. In the initial steps of the irradiation process both the roughness and the removal rate present a strong variation with the number of pulses. After approximately 200 pulses the process reaches a stationary regime where the roughness and the removal rate become constant. Characterization of the machined areas by scanning electron microscopy showed that the variations in roughness and removal rate are related to the evolution of the surface topography of the samples. Also, as a consequence of laser irradiation, TiC and Al2O3 are partially transformed into TiO2, TiC0.7N0.3, and an Al–Ti solid solution.


Microscopy ◽  
2018 ◽  
Vol 67 (1) ◽  
pp. 30-36
Author(s):  
Hiroyuki Iwata ◽  
Daisuke Kawaguchi ◽  
Hiroyasu Saka

Abstract Internal modification induced in Si by a permeable pulse laser was investigated by transmission electron microscopy. A laser induced modified volume (LIMV) was a cylindrical rod along the track of a laser beam with the head at the focus of the laser beam. In the LIMV, beside voids, dislocations, micro-cracks and what had been supposed to be an unidentified high-pressure phase (hpp) of Si were observed in LIMV. The so-called ‘hpp’ was identified mostly as diamond Si.


2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Rui-Na Zhang ◽  
Jun-Ying Zhao ◽  
Lin-Feng Li

Trichophyton rubrum is one of the most common types of dermatophyte, causing superficial skin mycosis in human populations. Although laser treatment of onychomycosis has been proven to be effective in the clinic, the underlying mechanism of the effect of the laser on fungal growth is not clear. The objective of the present study was to observe the ultrastructural changes of Trichophyton rubrum following laser irradiation and compare the transcriptome differences between the laser irradiation group and control group. In the present study, scanning electron microscopy and transmission electron microscopy were used to observe the ultrastructural changes following the laser irradiation of Trichophyton rubrum. We also performed RNA-seq to investigate the effects of laser irradiation on Trichophyton rubrum by comparing the transcriptome pattern with the control. Morphological observation with electron microscopy indicated that laser irradiation resulted in the destruction of the cell membrane system. A significant induction of apoptosis was noted compared with the control group, which was confirmed by the formation of the myeloid body and protein aggregates in the cytoplasm. RNA-seq demonstrated that the expression levels of Acyl-CoA N-acyltransferase and S-adenosyl-L-methionine-dependent methyltransferase were increased in the laser irradiation group. This result indicated that laser irradiation triggered the initiation of the damage repair pathway. In conclusion, the present study suggested that laser irradiation caused physiological injury and therefore inhibited the growth of Trichophyton rubrum.


Sign in / Sign up

Export Citation Format

Share Document