scholarly journals Radiocarbon method in monitoring of fossil fuel emission

2011 ◽  
Vol 38 (4) ◽  
pp. 314-324 ◽  
Author(s):  
Andrzej Rakowski

AbstractThe traditional radiocarbon method widely used in archaeology and geology for chronological purposes can also be used in environmental studies. Combustion of fossil fuels like coal, natural gas, petroleum, etc., in industrial and/or heavily urbanized areas, has increased the concentration of carbon dioxide in the atmosphere. The addition of fossil carbon caused changes of carbon isotopic composition, in particular, a definite decrease of 14C concentration in atmospheric CO2 and other carbon reservoirs (ocean and terrestrial biosphere), known as the Suess effect. Tree rings, leaves, as well as other annual growing plants reflected the changes of radiocarbon concentration in the atmosphere due to processes of photosynthesis and assimilation of carbon from the air. By measuring radiocarbon concentration directly in atmospheric CO2 samples and/or biospheric material growing in industrial and/or highly urbanized areas where high emission of dead carbon is expected, it is possible to estimate the total emission of dead CO2. Based on equations of mass balance for CO2 concentration, stable isotopic composition of carbon and radiocarbon concentration it is possible to calculate CO2 con-centration associated with fossil fuel emission into the atmosphere. The procedure use differences between the radiocarbon concentration and stable isotope composition of carbon observed in clean areas and industrial or/and highly urbanized areas.

Author(s):  
Ning Zeng

<p><span>The world-wide lockdown in response to the COVID-19 pandemic in year 2020 led to economic slowdown and large reduction of fossil fuel CO2 emissions 1,2, but it is unclear how much it would reduce atmospheric CO2 concentration, the main driver of climate change, and whether it can be observed. We estimated that a 7.9% reduction in emissions for 4 months would result in a 0.25 ppm decrease in the Northern Hemisphere CO2, an increment that is within the capability of current CO2 analyzers, but is a few times smaller than natural CO2 variabilities caused by weather and the biosphere such as El Nino. We used a state-of-the-art atmospheric transport model to simulate CO2, driven by a new daily fossil fuel emissions dataset and hourly biospheric fluxes from a carbon cycle model forced with observed climate variability. Our results show a 0.13 ppm decrease in atmospheric column CO2 anomaly averaged over 50S-50N for the period February-April 2020 relative to a 10-year climatology. A similar decrease was observed by the carbon satellite GOSAT3. Using model sensitivity experiments, we further found that COVID, the biosphere and weather contributed 54%, 23%, and 23% respectively. In May 2020, the CO2 anomaly continued to decrease and was 0.36 ppm below climatology, mostly due to the COVID reduction and a biosphere that turned from a relative carbon source to carbon sink, while weather impact fluctuated. This seemingly small change stands out as the largest sub-annual anomaly in the last 10 years. Measurements from global ground stations were analyzed. At city scale, on-road CO2 enhancement measured in Beijing shows reduction of 20-30 ppm, consistent with drastically reduced traffic during the lockdown, while station data suggest that the expected COVID signal of 5-10 ppm was swamped by weather-driven variability on multi-day time scales. The ability of our current carbon monitoring systems in detecting the small and short-lasting COVID signal on the background of fossil fuel CO2 accumulated over the last two centuries is encouraging. The COVID-19 pandemic is an unintended experiment whose impact suggests that to keep atmospheric CO2 at a climate-safe level will require sustained effort of similar magnitude and improved accuracy and expanded spatiotemporal coverage of our monitoring systems.</span></p>


Nature ◽  
1992 ◽  
Vol 357 (6378) ◽  
pp. 461-466 ◽  
Author(s):  
Bruno D. Marino ◽  
Michael B. McElroy ◽  
Ross J. Salawitch ◽  
W. Geoffrey Spaulding

2011 ◽  
Vol 11 (13) ◽  
pp. 6607-6622 ◽  
Author(s):  
P. Peylin ◽  
S. Houweling ◽  
M. C. Krol ◽  
U. Karstens ◽  
C. Rödenbeck ◽  
...  

Abstract. Inverse modeling techniques used to quantify surface carbon fluxes commonly assume that the uncertainty of fossil fuel CO2 (FFCO2) emissions is negligible and that intra-annual variations can be neglected. To investigate these assumptions, we analyzed the differences between four fossil fuel emission inventories with spatial and temporal differences over Europe and their impact on the model simulated CO2 concentration. Large temporal flux variations characterize the hourly fields (~40 % and ~80 % for the seasonal and diurnal cycles, peak-to-peak) and annual country totals differ by 10 % on average and up to 40 % for some countries (i.e., the Netherlands). These emissions have been prescribed to seven different transport models, resulting in 28 different FFCO2 concentrations fields. The modeled FFCO2 concentration time series at surface sites using time-varying emissions show larger seasonal cycles (+2 ppm at the Hungarian tall tower (HUN)) and smaller diurnal cycles in summer (−1 ppm at HUN) than when using constant emissions. The concentration range spanned by all simulations varies between stations, and is generally larger in winter (up to ~10 ppm peak-to-peak at HUN) than in summer (~5 ppm). The contribution of transport model differences to the simulated concentration std-dev is 2–3 times larger than the contribution of emission differences only, at typical European sites used in global inversions. These contributions to the hourly (monthly) std-dev's amount to ~1.2 (0.8) ppm and ~0.4 (0.3) ppm for transport and emissions, respectively. First comparisons of the modeled concentrations with 14C-based fossil fuel CO2 observations show that the large transport differences still hamper a quantitative evaluation/validation of the emission inventories. Changes in the estimated monthly biosphere flux (Fbio) over Europe, using two inverse modeling approaches, are relatively small (less that 5 %) while changes in annual Fbio (up to ~0.15 % GtC yr−1) are only slightly smaller than the differences in annual emission totals and around 30 % of the mean European ecosystem carbon sink. These results point to an urgent need to improve not only the transport models but also the assumed spatial and temporal distribution of fossil fuel emission inventories.


2009 ◽  
Vol 9 (2) ◽  
pp. 7457-7503 ◽  
Author(s):  
P. Peylin ◽  
S. Houweling ◽  
M. C. Krol ◽  
U. Karstens ◽  
C. Rödenbeck ◽  
...  

Abstract. Inverse modeling techniques used to quantify surface carbon fluxes commonly assume that the uncertainty of fossil fuel CO2 (FFCO2) emissions is negligible and that intra-annual variations can be neglected. To investigate these assumptions, we analyzed the differences between four fossil fuel emission maps with spatial and temporal differences over Europe and their impact on the model simulated CO2 concentration. Large temporal flux variations characterize the hourly fields (~40% and ~80% for the seasonal and diurnal cycles, peak-to-peak) and annual country totals differ by 10% on average and up to 40% for some countries (i.e., The Netherlands). These emissions have been prescribed to seven different transport models, resulting in 28 different FFCO2 concentrations fields. The modeled FFCO2 concentration time series at surface sites using time-varying emissions show larger seasonal cycles (+2 ppm at the Hungarian tall tower (HUN)) and smaller diurnal cycles in summer (−1 ppm at HUN) than when using constant emissions. The concentration range spanned by all simulations varies between stations, and is generally larger in winter (up to ~10 ppm peak-to-peak at HUN) than in summer (~5 ppm). The contribution of transport model differences to the simulated concentration std-dev is 2–3 times larger than the contribution of emission differences only, at typical European sites used in global inversions. These contributions to the hourly (monthly) std-dev's amount to ~1.2 (0.8) ppm and ~0.4 (0.3) ppm for transport and emissions, respectively. First comparisons of the modeled concentrations with 14C-based fossil fuel CO2 observations show that the large transport differences still hamper a quantitative evaluation/validation of the emission inventories. Changes in the estimated monthly biosphere flux (Fbio) over Europe, using two inverse modeling approaches, are relatively small (less that 5%) while changes in annual Fbio (up to ~0.15 Gt C/yr) are only slightly smaller than the differences in annual emission totals and around 30% of the mean European ecosystem carbon sink. These results point to an urgent need to improve not only the transport models but also the assumed spatial and temporal distribution of fossil fuel emission maps.


2017 ◽  
Author(s):  
Wanyu Zhao ◽  
Kimitaka Kawamura ◽  
Siyao Yue ◽  
Lianfang Wei ◽  
Hong Ren ◽  
...  

Abstract. This study investigates the seasonal variation, molecular distribution and stable carbon isotopic composition of diacids, oxocarboxylic acids and α-dicarbonyls to better understand the sources and formation processes of fine aerosols (PM2.5) in Beijing. The concentrations of total dicarboxylic acids varied from 110 to 2580 ng m−3, whereas oxoacids (9.50–353 ng m−3) and dicarbonyls (1.50–85.9 ng m−3) were less abundant. Oxalic acid was found to be the most abundant individual species, followed by succinic acid or occasionally by terephthalic acid (tPh), a plastic burning tracer. Ambient concentrations of phthalic acid (37.9±27.3 ng m−3) and tPh (48.7±51.1 ng m−3) are larger in winter than in other seasons, illustrating that fossil fuel combustion and plastic waste incineration contribute more significantly to wintertime aerosols. The year-round mass concentration ratios of malonic acid to succinic acid (C3/C4) are relatively by comparison with those in other urban aerosols and remote marine aerosols, most of which are less than or equal to unity in Beijing; thus, the degree of photochemical formation of diacids in Beijing is insignificant. Moreover, positive correlations of some oxocarboxylic acids and α-dicarbonyls with nss-K+, a tracer for biomass burning, suggest biogenic combustion activities accounting for a large contribution of these organic acids and related precursors. The mean δ13C value of succinic acid is highest among all species with values of −17.1±3.9‰ (winter) and −17.1±2.0‰ (spring), while malonic acid is less enriched in 13C than others in autumn (−17.6±4.6‰) and summer (−18.7±4.0‰). The δ13C values of major species in the Beijing aerosols are generally lower with a wider range than those in downwind regions in the western North Pacific, which indicates that Beijing has diverse emission sources with weak photooxidation. Thus, our study demonstrates that in addition to photochemical oxidation, high abundances of diacids, oxocarboxylic acids and α-dicarbonyls in Beijing are largely associated with anthropogenic primary emissions, such as biomass burning, fossil fuel combustion, and plastic burning.


Sign in / Sign up

Export Citation Format

Share Document