scholarly journals The space-fractional diffusion-advection equation: Analytical solutions and critical assessment of numerical solutions

Author(s):  
Robin Stern ◽  
Frederic Effenberger ◽  
Horst Fichtner ◽  
Tobias Schäfer

AbstractThe present work provides a critical assessment of numerical solutions of the space-fractional diffusion-advection equation, which is of high significance for applications in various natural sciences. In view of the fact that, in contrast to the case of normal (Gaussian) diffusion, no standard methods and corresponding numerical codes for anomalous diffusion problems have been established yet, it is of importance to critically assess the accuracy and practicability of existing approaches. Three numerical methods, namely a finite-difference method, the so-called matrix transfer technique, and a Monte-Carlo method based on the solution of stochastic differential equations, are analyzed and compared by applying them to three selected test problems for which analytical or semi-analytical solutions were known or are newly derived. The differences in accuracy and practicability are critically discussed with the result that the use of stochastic differential equations appears to be advantageous.

2015 ◽  
Vol 2015 ◽  
pp. 1-11
Author(s):  
Ying Du ◽  
Changlin Mei

Stochastic differential equations with jumps are of a wide application area especially in mathematical finance. In general, it is hard to obtain their analytical solutions and the construction of some numerical solutions with good performance is therefore an important task in practice. In this study, a compensated split-stepθmethod is proposed to numerically solve the stochastic differential equations with variable delays and random jump magnitudes. It is proved that the numerical solutions converge to the analytical solutions in mean-square with the approximate rate of 1/2. Furthermore, the mean-square stability of the exact solutions and the numerical solutions are investigated via a linear test equation and the results show that the proposed numerical method shares both the mean-square stability and the so-called A-stability.


2012 ◽  
Vol 2012 ◽  
pp. 1-21 ◽  
Author(s):  
Minghui Song ◽  
Ling Zhang

The main purpose of this paper is to investigate the convergence of the Euler method to stochastic differential equations with piecewise continuous arguments (SEPCAs). The classical Khasminskii-type theorem gives a powerful tool to examine the global existence of solutions for stochastic differential equations (SDEs) without the linear growth condition by the use of the Lyapunov functions. However, there is no such result for SEPCAs. Firstly, this paper shows SEPCAs which have nonexplosion global solutions under local Lipschitz condition without the linear growth condition. Then the convergence in probability of numerical solutions to SEPCAs under the same conditions is established. Finally, an example is provided to illustrate our theory.


2019 ◽  
Vol 23 (Suppl. 1) ◽  
pp. 1-12 ◽  
Author(s):  
Burhaneddin Izgi ◽  
Coskun Cetin

We develop Milstein-type versions of semi-implicit split-step methods for numerical solutions of non-linear stochastic differential equations with locally Lipschitz coefficients. Under a one-sided linear growth condition on the drift term, we obtain some moment estimates and discuss convergence properties of these numerical methods. We compare the performance of multiple methods, including the backward Milstein, tamed Milstein, and truncated Milstein procedures on non-linear stochastic differential equations including generalized stochastic Ginzburg-Landau equations. In particular, we discuss their empirical rates of convergence.


2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
Yongjin Li ◽  
Kamal Shah

We develop a numerical method by using operational matrices of fractional order integrations and differentiations to obtain approximate solutions to a class of coupled systems of fractional order partial differential equations (FPDEs). We use shifted Legendre polynomials in two variables. With the help of the aforesaid matrices, we convert the system under consideration to a system of easily solvable algebraic equation of Sylvester type. During this process, we need no discretization of the data. We also provide error analysis and some test problems to demonstrate the established technique.


2017 ◽  
Vol 59 (2) ◽  
pp. 167-182 ◽  
Author(s):  
H. Y. ALFIFI

Semi-analytical solutions are derived for the Brusselator system in one- and two-dimensional domains. The Galerkin method is processed to approximate the governing partial differential equations via a system of ordinary differential equations. Both steady-state concentrations and transient solutions are obtained. Semi-analytical results for the stability of the model are presented for the identified critical parameter value at which a Hopf bifurcation occurs. The impact of the diffusion coefficients on the system is also considered. The results show that diffusion acts to stabilize the systems better than the equivalent nondiffusive systems with the increasing critical value of the Hopf bifurcation. Comparison between the semi-analytical and numerical solutions shows an excellent agreement with the steady-state transient solutions and the parameter values at which the Hopf bifurcations occur. Examples of stable and unstable limit cycles are given, and Hopf bifurcation points are shown to confirm the results previously calculated in the Hopf bifurcation map. The usefulness and accuracy of the semi-analytical results are confirmed by comparison with the numerical solutions of partial differential equations.


Author(s):  
Abhilash S. Somayajula ◽  
Jeffrey Falzarano

The motion of a ship/offshore platform at sea is governed by a coupled set of nonlinear differential equations. In general, analytical solutions for such systems do not exist and recourse is taken to time-domain simulations to obtain numerical solutions. Each simulation is not only time consuming but also captures only a single realization of the many possible responses. In a design spiral when the concept design of a ship/platform is being iteratively changed, simulating multiple realizations for each interim design is impractical. An analytical approach is preferable as it provides the answer almost instantaneously and does not suffer from the drawback of requiring multiple realizations for statistical confidence. Analytical solutions only exist for simple systems, and hence, there is a need to simplify the nonlinear coupled differential equations into a simplified one degree-of-freedom (DOF) system. While simplified methods make the problem tenable, it is important to check that the system still reflects the dynamics of the complicated system. This paper systematically describes two of the popular simplified parametric roll models in the literature: Volterra GM and improved Grim effective wave (IGEW) roll models. A correction to the existing Volterra GM model described in current literature is proposed to more accurately capture the restoring forces. The simulated roll motion from each model is compared against a corresponding simulation from a nonlinear coupled time-domain simulation tool to check its veracity. Finally, the extent to which each of the models captures the nonlinear phenomenon accurately is discussed in detail.


Open Physics ◽  
2016 ◽  
Vol 14 (1) ◽  
pp. 668-675 ◽  
Author(s):  
Francisco Gómez ◽  
Enrique Escalante ◽  
Celia Calderón ◽  
Luis Morales ◽  
Mario González ◽  
...  

AbstractThis paper presents the alternative construction of the diffusion-advection equation in the range (1; 2). The fractional derivative of the Liouville-Caputo type is applied. Analytical solutions are obtained in terms of Mittag-Leffler functions. In the range (1; 2) the concentration exhibits the superdiffusion phenomena and when the order of the derivative is equal to 2 ballistic diffusion can be observed, these behaviors occur in many physical systems such as semiconductors, quantum optics, or turbulent diffusion. This mathematical representation can be applied in the description of anomalous complex processes.


Sign in / Sign up

Export Citation Format

Share Document