scholarly journals Experimental Investigation and FEM Modeling of Glued Timber Connections with Slotted-In Steel Plates

2019 ◽  
Vol 27 (4) ◽  
pp. 18-23
Author(s):  
Svitlana Shekhorkina ◽  
Alexander Kesariisky ◽  
Mykola Makhinko ◽  
Tetiana Nikiforova ◽  
Oleksandr Savytskyi

Abstract The study is focused on the mechanical behavior and finite element method (FEM) modeling of glued timber dowel connections with slotted-in steel plates. Standard tests accompanied by a physical optics investigation method were used in order to obtain information about the mechanical properties and stress-strain behavior of glued timber dowel connections with slotted-in steel plates. As such a methodology provides information on the stress-strain state over the surface of a connection, it was used as a verification criterion for a 3D finite-element model. Small-scale glued timber dowel connections with slotted-in steel plates were tested in parallel-to-grain tension to investigate their load-carrying capacity and the load-slip performance of the connection. A three-dimensional finite-element model of the glued timber dowel connections with slotted-in steel plates was developed using existing FE software and verified using the holographic interferograms obtained during step-by-step loading as well as the test results.

Author(s):  
Amir Khalilollahi ◽  
David H. Johnson ◽  
John T. Roth

An electric current, applied during deformation, has been shown to reduce the deformation force/energy, while also increasing the maximum achievable strain and decreasing springback. Considering this, the present work initiates the development of a finite element model to investigate electricity’s thermal/structural effects on a tensile specimen. The model allows the effect of joule-heating to be separated from other nonthermal property changes caused by the electricity. Comparison with experimental tensile testing with respect to the predicted stress-strain behavior and transient temperature profiles demonstrates the model predicts these behaviors adequately. A multifield large deformation finite element model is then developed. The model evaluates the stress-strain characteristics of the material while the specimen is carrying a large dc current and is being deformed, incorporating the effect of thermal softening. The simulation results are compared with surface infrared temperature measurements in order to verify the finite element model and then to actual deformation results in order to attain more qualitative and quantitative insight into the effects of the electric field.


2000 ◽  
Vol 7 (6) ◽  
pp. 333-341 ◽  
Author(s):  
Lloyd Hammond ◽  
Raphael Grzebieta

This paper presents the results of a series of small-scale underwater shock experiments that measured the structural responses of submerged, fully clamped, air-backed, steel plates to a range of high explosive charge sizes. The experimental results were subsequently used to validate a series of simulations using the coupled LS-DYNA/USA finite element/boundary element codes. The modelling exercise was complicated by a significant amount of local cavitation occurring in the fluid adjacent to the plate and difficulties in modelling the boundary conditions of the test plates. The finite element model results satisfactorily predicted the displacement-time history of the plate over a range of shock loadings although a less satisfactory correlation was achieved for the peak velocities. It is expected that the predictive capability of the finite element model will be significantly improved once hydrostatic initialisation can be fully utilised with the LS-DYNA/USA software.


2019 ◽  
Vol 5 (11) ◽  
pp. 2349-2358
Author(s):  
Ali Sabah Al Amli ◽  
Nadhir Al-Ansari ◽  
Jan Laue

Nonlinear analysis for reinforced concrete members (R.C.) with two types of bars also with unsaturated and saturated soils was used to represent the models. To control the corrosion in the steel bar that used in R.C. member and decrease the cost, the geogrid with steel bar reinforcement are taken in this study to determine the effect of load-deflection and stress-strain relationships. The finite element method is used to model the R.C. member, bars and soil. A three-dimensional finite element model by ABAQUS version 6.9 software program is used to predict the load versus deflection and stress versus strain response with soil. The results for the model in this study are compared with the experimental results from other research, and the results are very good. Therefore, it was concluded that the models developed in this study can accurately capture the behavior and predict the load-carrying capacity of such R.C. members with soil and the maximum stresses with strains. The results show plastic strain values in the R.C. member with saturated soil are larger than their values in unsaturated soil about (54%, 58%, and 55% and 52%) when the geogrid ratios are (without geogrid, 60%, 40% and 20%) respectively, with the same values of stresses.


2016 ◽  
Vol 8 (1) ◽  
pp. 25-57 ◽  
Author(s):  
Xiaoshan Lin ◽  
Mahmud Ashraf

In this study, a three-dimensional finite element model is developed to investigate the pressure–impulse response of the steel plates with semi-rigid connections under blast loads. The strain rate effect on the material properties is considered, and a number of spring elements are used for simulating the plate to support connections. Once verified, the developed finite element model is then used to investigate the effects of a series of parameters on the blast resistance and energy absorption capability of the steel plates, including the effects of connection rigidity, plate thickness, impulse loading and the shape of corrugation.


2012 ◽  
Vol 579 ◽  
pp. 453-463
Author(s):  
Jinn Tong Chiu ◽  
Yeou Yih Lin ◽  
Ship Peng Lo

A three-dimensional atomic-scale finite element model was developed in this paper for simulation of a nano-scale uniaxial tension. First, the Morse’s potential function was used to simulate the forces acting among particles. Furthermore, a non-linear spring and dashpot element with a lumped mass was used to establish an atomic model. The elongation of the spring at fracture was used to simulate the radius of fracture of the atomic link. This method was applied to investigate the proportional tension test of an idealized FCC single crystal copper film along the x direction. The study includes the stress-strain curve, the effect of five categories of atomic distances on the stress-strain curve; and the effect of strain-rate on the stress-strain curve. The results showed that (1)the simulated maximum stress for copper is very close to 30.0GPa, which is also the value of maximum equivalent stress obtained by Lin and Hwang [6], verifying the validity of the calculation of this paper. In the tension test of copper, necking develops gradually and eventually leads to fracture. The simulated deformed material element during each stage of deformation was similar to that simulated by Komanduri et al.[2](2)the influence of =6.2608 on the five categories of atomic distance considered was limited and it may be neglected to save computation time,(3)when the strain-rate was large, the resistance to deformation was also large, leading to an increase in the yield stress and fracture stress.


1996 ◽  
Vol 24 (4) ◽  
pp. 339-348 ◽  
Author(s):  
R. M. V. Pidaparti

Abstract A three-dimensional (3D) beam finite element model was developed to investigate the torsional stiffness of a twisted steel-reinforced cord-rubber belt structure. The present 3D beam element takes into account the coupled extension, bending, and twisting deformations characteristic of the complex behavior of cord-rubber composite structures. The extension-twisting coupling due to the twisted nature of the cords was also considered in the finite element model. The results of torsional stiffness obtained from the finite element analysis for twisted cords and the two-ply steel cord-rubber belt structure are compared to the experimental data and other alternate solutions available in the literature. The effects of cord orientation, anisotropy, and rubber core surrounding the twisted cords on the torsional stiffness properties are presented and discussed.


1985 ◽  
Vol 52 (4) ◽  
pp. 801-805 ◽  
Author(s):  
P. R. Heyliger ◽  
J. N. Reddy

A quasi-three dimensional elasticity formulation and associated finite element model for the stress analysis of symmetric laminates with free-edge cap reinforcement are described. Numerical results are presented to show the effect of the reinforcement on the reduction of free-edge stresses. It is observed that the interlaminar normal stresses are reduced considerably more than the interlaminar shear stresses due to the free-edge reinforcement.


Sign in / Sign up

Export Citation Format

Share Document