A Three-Dimensional Atomic-Scale Finite Element Model for a Copper Nano Thin Film Subject to a Uniaxial Tension

2012 ◽  
Vol 579 ◽  
pp. 453-463
Author(s):  
Jinn Tong Chiu ◽  
Yeou Yih Lin ◽  
Ship Peng Lo

A three-dimensional atomic-scale finite element model was developed in this paper for simulation of a nano-scale uniaxial tension. First, the Morse’s potential function was used to simulate the forces acting among particles. Furthermore, a non-linear spring and dashpot element with a lumped mass was used to establish an atomic model. The elongation of the spring at fracture was used to simulate the radius of fracture of the atomic link. This method was applied to investigate the proportional tension test of an idealized FCC single crystal copper film along the x direction. The study includes the stress-strain curve, the effect of five categories of atomic distances on the stress-strain curve; and the effect of strain-rate on the stress-strain curve. The results showed that (1)the simulated maximum stress for copper is very close to 30.0GPa, which is also the value of maximum equivalent stress obtained by Lin and Hwang [6], verifying the validity of the calculation of this paper. In the tension test of copper, necking develops gradually and eventually leads to fracture. The simulated deformed material element during each stage of deformation was similar to that simulated by Komanduri et al.[2](2)the influence of =6.2608 on the five categories of atomic distance considered was limited and it may be neglected to save computation time,(3)when the strain-rate was large, the resistance to deformation was also large, leading to an increase in the yield stress and fracture stress.

Author(s):  
William C. Guttner ◽  
Caio C. P. Santos ◽  
Celso P. Pesce

Abstract Umbilical cables are fundamental equipment used in deep and ultra-deep waters oil and gas production systems. The complexity of this kind of structure leads structural analysis to be currently performed with numerical tools. This paper presents a nonlinear three-dimensional finite element model of a typical armored Steel Tube Umbilical Cable (STU) subjected to crushing loads imposed to the umbilical cable during laying operation. The study focuses on the analysis of the stress distribution in the steel tubes at caterpillar shoes, mainly at the entry/exit transition regions. With the use of a commercial software, the finite element model is constructed, considering geometric and materials nonlinearities. Crushing loads are imposed by two rigid plates. Focus is given on the duplex tubes, with the material stress-strain curve modeled from a specific crushing experiment with a single tube and by using a classic Ramberg-Osgood fitting. Firstly, comparisons at mid-length of the three-dimensional model are made with the results from a simpler and planar finite element model. Then, the localized three-dimensional effects are analyzed. The results show a considerable increase of the stress levels in the steel tubes at these transition regions, with the occurrence of stress field redistribution after the onset of plastic deformation.


2017 ◽  
Vol 09 (03) ◽  
pp. 1750038 ◽  
Author(s):  
Xiaofeng Lu ◽  
Chaojie Wang ◽  
Gang Li ◽  
Yang Liu ◽  
Xiaolei Zhu ◽  
...  

The finite element analysis (FEA) of porous NiTi shape memory alloys (SMAs) remains a challenge due to irregularity and complexity of pore structure. In this paper, the real finite element model (FEM) is established based on the geometrical reconstruction. Through a SMA constitutive model, the mechanical behavior and stress-induced martensitic (SIM) phase transformation are analyzed with the real FEM. The results show that the stress–strain curve of FEA is in good agreement with the experimental curve and the calculation can reflect the mechanical behavior well in the compressive process. With the increase of load, the SIM first appears pore walls or weak parts of struts, then spreads to the center of matrix, and finally happens to most of matrix. When the slope of the stress–strain curve shows obvious changes, the SIM has happened in quite a part of matrix.


2009 ◽  
Vol 79-82 ◽  
pp. 1297-1300 ◽  
Author(s):  
Hyup Jae Chung ◽  
Kyong Yop Rhee ◽  
Beom Suck Han ◽  
Yong Mun Ryu

In this study, finite element analysis was made to predict the tensile and compressive behaviors of aluminum foam material. The predicted tensile and compressive behaviors were compared with those determined from the tensile and compressive tests. X-ray imaging technique was used to determine internal structure of aluminum foam material. That is, X-ray computed tomography (CT) was used to model the porosities of the material. Three-dimensional finite element modeling was made by stacking two-dimensional tomography of aluminum foam material determined from CT images. The stackings of CT images were processed by three-dimensional modeling program. The results showed that the tensile stress-strain curve predicted from the finite element analysis was similar to that determined by the experiment. The simulated compressive stress-strain curve also showed similar tendency with that of experiment up to about 0.4 strain but exhibited a different behavior from the experimental one after 0.4 strain. The discrepancy of compressive stress-strain curves in a high strain range was associated with the contact of aluminum foam walls broken by the large deformation.


2019 ◽  
Vol 27 (4) ◽  
pp. 18-23
Author(s):  
Svitlana Shekhorkina ◽  
Alexander Kesariisky ◽  
Mykola Makhinko ◽  
Tetiana Nikiforova ◽  
Oleksandr Savytskyi

Abstract The study is focused on the mechanical behavior and finite element method (FEM) modeling of glued timber dowel connections with slotted-in steel plates. Standard tests accompanied by a physical optics investigation method were used in order to obtain information about the mechanical properties and stress-strain behavior of glued timber dowel connections with slotted-in steel plates. As such a methodology provides information on the stress-strain state over the surface of a connection, it was used as a verification criterion for a 3D finite-element model. Small-scale glued timber dowel connections with slotted-in steel plates were tested in parallel-to-grain tension to investigate their load-carrying capacity and the load-slip performance of the connection. A three-dimensional finite-element model of the glued timber dowel connections with slotted-in steel plates was developed using existing FE software and verified using the holographic interferograms obtained during step-by-step loading as well as the test results.


1996 ◽  
Vol 24 (4) ◽  
pp. 339-348 ◽  
Author(s):  
R. M. V. Pidaparti

Abstract A three-dimensional (3D) beam finite element model was developed to investigate the torsional stiffness of a twisted steel-reinforced cord-rubber belt structure. The present 3D beam element takes into account the coupled extension, bending, and twisting deformations characteristic of the complex behavior of cord-rubber composite structures. The extension-twisting coupling due to the twisted nature of the cords was also considered in the finite element model. The results of torsional stiffness obtained from the finite element analysis for twisted cords and the two-ply steel cord-rubber belt structure are compared to the experimental data and other alternate solutions available in the literature. The effects of cord orientation, anisotropy, and rubber core surrounding the twisted cords on the torsional stiffness properties are presented and discussed.


2012 ◽  
Vol 27 (2) ◽  
pp. 318-328 ◽  
Author(s):  
Svetlana Borodulina ◽  
Artem Kulachenko ◽  
Mikael Nygårds ◽  
Sylvain Galland

Abstract We have investigated a relation between micromechanical processes and the stress-strain curve of a dry fiber network during tensile loading. By using a detailed particle-level simulation tool we investigate, among other things, the impact of “non-traditional” bonding parameters, such as compliance of bonding regions, work of separation and the actual number of effective bonds. This is probably the first three-dimensional model which is capable of simulating the fracture process of paper accounting for nonlinearities at the fiber level and bond failures. The failure behavior of the network considered in the study could be changed significantly by relatively small changes in bond strength, as compared to the scatter in bonding data found in the literature. We have identified that compliance of the bonding regions has a significant impact on network strength. By comparing networks with weak and strong bonds, we concluded that large local strains are the precursors of bond failures and not the other way around.


1985 ◽  
Vol 52 (4) ◽  
pp. 801-805 ◽  
Author(s):  
P. R. Heyliger ◽  
J. N. Reddy

A quasi-three dimensional elasticity formulation and associated finite element model for the stress analysis of symmetric laminates with free-edge cap reinforcement are described. Numerical results are presented to show the effect of the reinforcement on the reduction of free-edge stresses. It is observed that the interlaminar normal stresses are reduced considerably more than the interlaminar shear stresses due to the free-edge reinforcement.


Sign in / Sign up

Export Citation Format

Share Document