scholarly journals On the Oscillation of Conformable Impulsive Vector Partial Differential Equations

2020 ◽  
Vol 76 (1) ◽  
pp. 95-114
Author(s):  
George E. Chatzarakis ◽  
Kandhasamy Logaarasi ◽  
Thangaraj Raja ◽  
Vadivel Sadhasivam

AbstractIn this paper, we study the oscillations of a class of conformable impulsive vector partial functional differential equations. For this class, our approach is to reduce the multi-dimensional oscillation problems to that of one dimensional impulsive delay differential inequalities by applying inner product reducing dimension method and an impulsive differential inequality technique. We provide an example to illustrate the effectiveness of our main results.

Author(s):  
Lidia Skóra

Abstract We present some existence and uniqueness result for a boundary value problem for functional differential equations of second order with impulses at fixed points.


2015 ◽  
Vol 2015 ◽  
pp. 1-6
Author(s):  
Gang Li ◽  
Weizhong Ling ◽  
Changming Ding

We establish a new comparison principle for impulsive differential systems with time delay. Then, using this comparison principle, we obtain some sufficient conditions for several stabilities of impulsive delay differential equations. Finally, we present an example to show the effectiveness of our results.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Pei Cheng ◽  
Fengqi Yao ◽  
Mingang Hua

The problem of stability for nonlinear impulsive stochastic functional differential equations with delayed impulses is addressed in this paper. Based on the comparison principle and an impulsive delay differential inequality, some exponential stability and asymptotical stability criteria are derived, which show that the system will be stable if the impulses’ frequency and amplitude are suitably related to the increase or decrease of the continuous stochastic flows. The obtained results complement ones from some recent works. Two examples are discussed to illustrate the effectiveness and advantages of our results.


2010 ◽  
Vol 2010 ◽  
pp. 1-11 ◽  
Author(s):  
Shiguo Peng ◽  
Liping Yang

This paper develops some new Razumikhin-type theorems on global exponential stability of impulsive functional differential equations. Some applications are given to impulsive delay differential equations. Compared with some existing works, a distinctive feature of this paper is to address exponential stability problems for any finite delay. It is shown that the functional differential equations can be globally exponentially stabilized by impulses even if it may be unstable itself. Two examples verify the effectiveness of the proposed results.


Symmetry ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1095
Author(s):  
Clemente Cesarano ◽  
Osama Moaaz ◽  
Belgees Qaraad ◽  
Nawal A. Alshehri ◽  
Sayed K. Elagan ◽  
...  

Differential equations with delay arguments are one of the branches of functional differential equations which take into account the system’s past, allowing for more accurate and efficient future prediction. The symmetry of the equations in terms of positive and negative solutions plays a fundamental and important role in the study of oscillation. In this paper, we study the oscillatory behavior of a class of odd-order neutral delay differential equations. We establish new sufficient conditions for all solutions of such equations to be oscillatory. The obtained results improve, simplify and complement many existing results.


2021 ◽  
pp. 1-11
Author(s):  
Jian Wang ◽  
Yuanguo Zhu

Uncertain delay differential equation is a class of functional differential equations driven by Liu process. It is an important model to describe the evolution process of uncertain dynamical system. In this paper, on the one hand, the analytic expression of a class of linear uncertain delay differential equations are investigated. On the other hand, the new sufficient conditions for uncertain delay differential equations being stable in measure and in mean are presented by using retarded-type Gronwall inequality. Several examples show that our stability conditions are superior to the existing results.


Axioms ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 61 ◽  
Author(s):  
Clemente Cesarano ◽  
Omar Bazighifan

In this paper, the authors obtain some new sufficient conditions for the oscillation of all solutions of the fourth order delay differential equations. Some new oscillatory criteria are obtained by using the generalized Riccati transformations and comparison technique with first order delay differential equation. Our results extend and improve many well-known results for oscillation of solutions to a class of fourth-order delay differential equations. The effectiveness of the obtained criteria is illustrated via examples.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
M. Mustafa Bahşi ◽  
Mehmet Çevik

The pantograph equation is a special type of functional differential equations with proportional delay. The present study introduces a compound technique incorporating the perturbation method with an iteration algorithm to solve numerically the delay differential equations of pantograph type. We put forward two types of algorithms, depending upon the order of derivatives in the Taylor series expansion. The crucial convenience of this method when compared with other perturbation methods is that this method does not require a small perturbation parameter. Furthermore, a relatively fast convergence of the iterations to the exact solutions and more accurate results can be achieved. Several illustrative examples are given to demonstrate the efficiency and reliability of the technique, even for nonlinear cases.


Author(s):  
L.C. Becker ◽  
T.A. Burton

SynopsisThis paper is concerned with the problem of showing uniform stability and equiasymptotic stability of thezero solution of functional differential equations with either finite or infinite delay. The investigations are based on Liapunov's direct method and attention is focused on those equations whose right-hand sides are unbounded for bounded state variables.


Sign in / Sign up

Export Citation Format

Share Document