scholarly journals Distribuion of Leading Digits of Numbers II

2019 ◽  
Vol 14 (1) ◽  
pp. 19-42
Author(s):  
Yukio Ohkubo ◽  
Oto Strauch

AbstractIn this paper, we study the sequence (f (pn))n≥1,where pn is the nth prime number and f is a function of a class of slowly increasing functions including f (x)=logb xr and f (x)=logb(x log x)r,where b ≥ 2 is an integer and r> 0 is a real number. We give upper bounds of the discrepancy D_{{N_i}}^*\left( {f\left( {{p_n}} \right),g} \right) for a distribution function g and a sub-sequence (Ni)i≥1 of the natural numbers. Especially for f (x)= logb xr, we obtain the effective results for an upper bound of D_{{N_i}}^*\left( {f\left( {{p_n}} \right),g} \right).

2017 ◽  
Vol 13 (03) ◽  
pp. 751-759 ◽  
Author(s):  
William D. Banks ◽  
Victor Z. Guo

For any odd prime number [Formula: see text], let [Formula: see text] be the Legendre symbol, and let [Formula: see text] be the sequence of positive nonresidues modulo [Formula: see text], i.e. [Formula: see text] for each [Formula: see text]. In 1957, Burgess showed that the upper bound [Formula: see text] holds for any fixed [Formula: see text]. In this paper, we prove that the stronger bound [Formula: see text] holds for all odd primes [Formula: see text] provided that [Formula: see text] where the implied constants are absolute. For fixed [Formula: see text], we also show that there is a number [Formula: see text] such that for all odd primes [Formula: see text], there are [Formula: see text] natural numbers [Formula: see text] with [Formula: see text] provided that [Formula: see text]


Filomat ◽  
2019 ◽  
Vol 33 (10) ◽  
pp. 3223-3230
Author(s):  
Sh. Saadat ◽  
M.H. Hooshmand

Analytic summability of functions was introduced by the second author in 2016. He utilized Bernoulli numbers and polynomials for a holomorphic function to construct analytic summability. The analytic summand function f? (if exists) satisfies the difference functional equation f?(z) = f (z) + f?(z-1). Moreover, some upper bounds for f? and several inequalities between f and f? were presented by him. In this paper, by using Alzer?s improved upper bound for Bernoulli numbers, we improve those upper bounds and obtain some inequalities and new upper bounds. As some applications of the topic, we obtain several upper bounds for Bernoulli polynomials, sums of powers of natural numbers, (e.g., 1p+2p+3p+...+rp ? 2p! ?p+1 (e?r-1)) and several inequalities for exponential, hyperbolic and trigonometric functions.


2019 ◽  
Vol 11 (06) ◽  
pp. 1950070
Author(s):  
Shuang Zhang ◽  
Yan Zhu

For a real number [Formula: see text], the [Formula: see text]-matrix of a graph [Formula: see text] is defined to be [Formula: see text] where [Formula: see text] and [Formula: see text] are the adjacency matrix and degree diagonal matrix of [Formula: see text], respectively. The [Formula: see text]-spectral radius of [Formula: see text], denoted by [Formula: see text], is the largest eigenvalue of [Formula: see text]. In this paper, we consider the upper bound of the [Formula: see text]-spectral radius [Formula: see text], also we give some upper bounds for the second largest eigenvalue of [Formula: see text]-matrix.


1996 ◽  
Vol 61 (4) ◽  
pp. 1158-1192
Author(s):  
Masahiro Kumabe

This paper was inspired by Lerman [15] in which he proved various properties of upper bounds for the arithmetical degrees. We discuss the complementation property of upper bounds for the arithmetical degrees. In Lerman [15], it is proved that uniform upper bounds for the arithmetical degrees are jumps of upper bounds for the arithmetical degrees. So any uniform upper bound for the arithmetical degrees is not a minimal upper bound for the arithmetical degrees. Given a uniform upper bound a for the arithmetical degrees, we prove a minimal complementation theorem for the upper bounds for the arithmetical degrees below a. Namely, given such a and b < a which is an upper bound for the arithmetical degrees, there is a minimal upper bound for the arithmetical degrees c such that b ∪ c = a. This answers a question in Lerman [15]. We prove this theorem by different methods depending on whether a has a function which is not dominated by any arithmetical function. We prove two propositions (see §1), of which the theorem is an immediate consequence.Our notation is almost standard. Let A ⊕ B = {2n∣n ∈ A} ∪ {2n + 1∣n + 1∣n ∈ B} for any sets A and B. Let ω be the set of nonnegative natural numbers.


Author(s):  
Jiuya Wang

AbstractElementary abelian groups are finite groups in the form of {A=(\mathbb{Z}/p\mathbb{Z})^{r}} for a prime number p. For every integer {\ell>1} and {r>1}, we prove a non-trivial upper bound on the {\ell}-torsion in class groups of every A-extension. Our results are pointwise and unconditional. This establishes the first case where for some Galois group G, the {\ell}-torsion in class groups are bounded non-trivially for every G-extension and every integer {\ell>1}. When r is large enough, the unconditional pointwise bound we obtain also breaks the previously best known bound shown by Ellenberg and Venkatesh under GRH.


1996 ◽  
Vol 321 ◽  
pp. 335-370 ◽  
Author(s):  
R. R. Kerswell

Rigorous upper bounds on the viscous dissipation rate are identified for two commonly studied precessing fluid-filled configurations: an oblate spheroid and a long cylinder. The latter represents an interesting new application of the upper-bounding techniques developed by Howard and Busse. A novel ‘background’ method recently introduced by Doering & Constantin is also used to deduce in both instances an upper bound which is independent of the fluid's viscosity and the forcing precession rate. Experimental data provide some evidence that the observed viscous dissipation rate mirrors this behaviour at sufficiently high precessional forcing. Implications are then discussed for the Earth's precessional response.


Author(s):  
Indranil Biswas ◽  
Ajneet Dhillon ◽  
Nicole Lemire

AbstractWe find upper bounds on the essential dimension of the moduli stack of parabolic vector bundles over a curve. When there is no parabolic structure, we improve the known upper bound on the essential dimension of the usual moduli stack. Our calculations also give lower bounds on the essential dimension of the semistable locus inside the moduli stack of vector bundles of rank r and degree d without parabolic structure.



10.37236/3097 ◽  
2013 ◽  
Vol 20 (2) ◽  
Author(s):  
Fateme Raei Barandagh ◽  
Amir Rahnamai Barghi

Let $n>1$ be an integer and $p$ be a prime number. Denote by $\mathfrak{C}_{p^n}$ the class of non-thin association $p$-schemes of degree $p^n$. A sharp upper and lower bounds on the rank of schemes in $\mathfrak{C}_{p^n}$ with a certain order of thin radical are obtained. Moreover, all schemes in this class whose rank are equal to the lower bound are characterized and some schemes in this class whose rank are equal to the upper bound are constructed. Finally, it is shown that the scheme with minimum rank in $\mathfrak{C}_{p^n}$ is unique up to isomorphism, and it is a fusion of any association $p$-schemes with degree $p^n$.


1994 ◽  
Vol 59 (3) ◽  
pp. 977-983 ◽  
Author(s):  
Alistair H. Lachlan ◽  
Robert I. Soare

AbstractWe settle a question in the literature about degrees of models of true arithmetic and upper bounds for the arithmetic sets. We prove that there is a model of true arithmetic whose degree is not a uniform upper bound for the arithmetic sets. The proof involves two forcing constructions.


Sign in / Sign up

Export Citation Format

Share Document