scholarly journals Knowledge discovery in data using formal concept analysis and random projections

Author(s):  
Cherukuri Kumar

Knowledge discovery in data using formal concept analysis and random projections In this paper our objective is to propose a random projections based formal concept analysis for knowledge discovery in data. We demonstrate the implementation of the proposed method on two real world healthcare datasets. Formal Concept Analysis (FCA) is a mathematical framework that offers a conceptual knowledge representation through hierarchical conceptual structures called concept lattices. However, during the design of a concept lattice, complexity plays a major role.

Author(s):  
Ch. Aswani Kumar ◽  
Prem Kumar Singh

Introduced by Rudolf Wille in the mid-80s, Formal Concept Analysis (FCA) is a mathematical framework that offers conceptual data analysis and knowledge discovery. FCA analyzes the data, which is represented in the form of a formal context, that describe the relationship between a particular set of objects and a particular set of attributes. From the formal context, FCA produces hierarchically ordered clusters called formal concepts and the basis of attribute dependencies, called attribute implications. All the concepts of a formal context form a hierarchical complete lattice structure called concept lattice that reflects the relationship of generalization and specialization among concepts. Several algorithms are proposed in the literature to extract the formal concepts from a given context. The objective of this chapter is to analyze, demonstrate, and compare a few standard algorithms that extract the formal concepts. For each algorithm, the analysis considers the functionality, output, complexity, delay time, exploration type, and data structures involved.


2021 ◽  
pp. 1-18
Author(s):  
Han Yang ◽  
Keyun Qin

The theory of three-way concept analysis has been developed into an effective tool for data analysis and knowledge discovery. In this paper, we propose neutrosophic three-way concept lattice by combining neutrosophic set with three-way concept analysis and present an approach for conflict analysis by using neutrosophic three-way concept lattice. Firstly, we propose the notion of neutrosophic formal context, in which the relationships between objects and attributes are expressed by neutrosophic numbers. Three pairs of concept derivation operators are proposed. The basic properties of object-induced and attribute-induced neutrosophic three-way concept lattices are examined. Secondly, we divide the neutrosophic formal context into three classical formal contexts and propose the notions of the candidate neutrosophic three-way concepts and the redundant neutrosophic three-way concepts. Two approaches of constructing object-induced (attribute-induced) neutrosophic three-way concept lattices are presented by using candidate, redundant and original neutrosophic three-way concepts respectively. Finally, we apply the neutrosophic formal concept analysis to the conflict analysis and put forward the corresponding optimal strategy and the calculation method of the alliance.


2013 ◽  
Vol 760-762 ◽  
pp. 1708-1712
Author(s):  
Ying Fang Li ◽  
Ying Jiang Li ◽  
Yan Li ◽  
Yang Bo

At present, as the number of web services resources on the network drastically increased, how to quickly and efficiently find the needed services from publishing services has become a problem to resolve. Aiming at the problems of low efficiency in service discovery of traditional web service, the formal concept analysis ( FCA) is introduced into the semantic Web service matching, and a Matching Algorithm based semantic web service is proposed. With considering the concept of limited inheritance,this method introduces the concept of limited inheritance to the semantic similarity calculation based on the concept lattice. It is significant in enhancing the service function matching in practical applications through adjust the calculation.


Information ◽  
2018 ◽  
Vol 9 (9) ◽  
pp. 228 ◽  
Author(s):  
Zuping Zhang ◽  
Jing Zhao ◽  
Xiping Yan

Web page clustering is an important technology for sorting network resources. By extraction and clustering based on the similarity of the Web page, a large amount of information on a Web page can be organized effectively. In this paper, after describing the extraction of Web feature words, calculation methods for the weighting of feature words are studied deeply. Taking Web pages as objects and Web feature words as attributes, a formal context is constructed for using formal concept analysis. An algorithm for constructing a concept lattice based on cross data links was proposed and was successfully applied. This method can be used to cluster the Web pages using the concept lattice hierarchy. Experimental results indicate that the proposed algorithm is better than previous competitors with regard to time consumption and the clustering effect.


2012 ◽  
Vol 6-7 ◽  
pp. 625-630 ◽  
Author(s):  
Hong Sheng Xu

In the form of background in the form of concept partial relation to the corresponding concept lattice, concept lattice is the core data structure of formal concept analysis. Association rule mining process includes two phases: first find all the frequent itemsets in data collection, Second it is by these frequent itemsets to generate association rules. This paper analyzes the association rule mining algorithms, such as Apriori and FP-Growth. The paper presents the construction search engine based on formal concept analysis and association rule mining. Experimental results show that the proposed algorithm has high efficiency.


Author(s):  
Nida Meddouri ◽  
Mondher Maddouri

Knowledge discovery in databases (KDD) aims to exploit the large amounts of data collected every day in various fields of computing application. The idea is to extract hidden knowledge from a set of data. It gathers several tasks that constitute a process, such as: data selection, pre-processing, transformation, data mining, visualization, etc. Data mining techniques include supervised classification and unsupervised classification. Classification consists of predicting the class of new instances with a classifier built on learning data of labeled instances. Several approaches were proposed such as: the induction of decision trees, Bayes, nearest neighbor search, neural networks, support vector machines, and formal concept analysis. Learning formal concepts always refers to the mathematical structure of concept lattice. This article presents a state of the art on formal concept analysis classifier. The authors present different ways to calculate the closure operators from nominal data and also present new approach to build only a part of the lattice including the best concepts. This approach is based on Dagging (ensemble method) that generates an ensemble of classifiers, each one represents a formal concept, and combines them by a voting rule. Experimental results are given to prove the efficiency of the proposed method.


2020 ◽  
Vol 39 (3) ◽  
pp. 2783-2790
Author(s):  
Qian Hu ◽  
Ke-Yun Qin

The construction of concept lattices is an important research topic in formal concept analysis. Inspired by multi-granularity rough sets, multi-granularity formal concept analysis has become a new hot research issue. This paper mainly studies the construction methods of concept lattices in multi-granularity formal context. The relationships between concept forming operators under different granularity are discussed. The mutual transformation methods of formal concepts under different granularity are presented. In addition, the approaches of obtaining coarse-granularity concept lattice by fine-granularity concept lattice and fine-granularity concept lattice by coarse-granularity concept lattice are examined. The related algorithms for generating concept lattices are proposed. The practicability of the method is illustrated by an example.


2013 ◽  
Vol 427-429 ◽  
pp. 2536-2539
Author(s):  
Xue Song Dai ◽  
Yuan Ma ◽  
Wen Xue Hong

Formal context is one of the research contents of formal concept analysis theory. In concept lattice, the attributes of the object are equivalent and there is no hierarchy. Facing to this problem, the equivalence relation which is on the attributes' set is defined and the corresponding σ operation is proposed. On this basis, the structure method of attribute hierarchical diagram is presented and attributes' sequences of associated objects are obtained. This conclusion enriches and extends the analysis method of the formal context.


Sign in / Sign up

Export Citation Format

Share Document