scholarly journals Sliding mode methods for fault detection and fault tolerant control with application to aerospace systems

Author(s):  
Christopher Edwards ◽  
Halim Alwi ◽  
Chee Tan

Sliding mode methods for fault detection and fault tolerant control with application to aerospace systemsSliding mode methods have been historically studied because of their strong robustness properties with regard to a certain class of uncertainty, achieved by employing nonlinear control/injection signals to force the system trajectories to attain in finite time a motion along a surface in the state-space. This paper will consider how these ideas can be exploited for fault detection (specifically fault signal estimation) and subsequently fault tolerant control. It will also describe applications of these ideas to aerospace systems, including piloted flight simulator results associated with the GARTEUR AG16 Action Group on Fault Tolerant Control. The results demonstrate a successful real-time implementation of the proposed fault tolerant control scheme on a motion flight simulator configured to represent the post-failure EL-AL aircraft.

2015 ◽  
Vol 57 ◽  
pp. 340-351 ◽  
Author(s):  
Hemza Mekki ◽  
Omar Benzineb ◽  
Djamel Boukhetala ◽  
Mohamed Tadjine ◽  
Mohamed Benbouzid

Author(s):  
Jun Zhou ◽  
Jing Chang ◽  
Zongyi Guo

The paper describes the design of a fault-tolerant control scheme for an uncertain model of a hypersonic reentry vehicle subject to actuator faults. In order to improve superior transient performances for state tracking, the proposed method relies on a back-stepping sliding mode controller combined with an adaptive disturbance observer and a reference vector generator. This structure allows for a faster response and reduces the overshoots compared to linear conventional disturbance observers based sliding mode controller. Robust stability and performance guarantees of the overall closed-loop system are obtained using Lyapunov theory. Finally, numerical simulations results illustrate the effectiveness of the proposed technique.


Author(s):  
Majied Mokhtari ◽  
Mostafa Taghizadeh ◽  
Pegah Ghaf Ghanbari

In this paper, an active fault-tolerant control scheme is proposed for a lower limb exoskeleton, based on hybrid backstepping nonsingular fast terminal integral type sliding mode control and impedance control. To increase the robustness of the sliding mode controller and to eliminate the chattering, a nonsingular fast terminal integral type sliding surface is used, which ensures finite time convergence and high tracking accuracy. The backstepping term of this controller guarantees global stability based on Lyapunov stability criterion, and the impedance control reduces the interaction forces between the user and the robot. This controller employs a third order super twisting sliding mode observer for detecting, isolating ad estimating sensor and actuator faults. Motion stability based on zero moment point criterion is achieved by trajectory planning of waist joint. Furthermore, the highest level of stability, minimum error in tracking the desired joint trajectories, minimum interaction force between the user and the robot, and maximum system capability to handle the effect of faults are realized by optimizing the parameters of the desired trajectories, the controller and the observer, using harmony search algorithm. Simulation results for the proposed controller are compared with the results obtained from adaptive nonsingular fast terminal integral type sliding mode control, as well as conventional sliding mode control, which confirm the outperformance of the proposed control scheme.


Energies ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1281 ◽  
Author(s):  
Farzin Piltan ◽  
Cheol-Hong Kim ◽  
Jong-Myon Kim

In this paper, an adaptive Takagi–Sugeno (T–S) fuzzy sliding mode extended autoregressive exogenous input (ARX)–Laguerre proportional integral (PI) observer is proposed. The proposed T–S fuzzy sliding mode extended-state ARX–Laguerre PI observer adaptively improves the reliability, robustness, estimation accuracy, and convergence of fault detection, estimation, and identification. For fault-tolerant control in the presence of uncertainties and unknown conditions, an adaptive fuzzy sliding mode estimation technique is introduced. The sliding surface slope gain is significant to improve the system’s stability, but the sliding mode technique increases high-frequency oscillation (chattering), which reduces the precision of the fault diagnosis and tolerant control. A fuzzy procedure using a sliding surface and actual output position as inputs can adaptively tune the sliding surface slope gain of the sliding mode fault-tolerant control technique. The proposed robust adaptive T–S fuzzy sliding mode estimation extended-state ARX–Laguerre PI observer was verified with six degrees of freedom (DOF) programmable universal manipulation arm (PUMA) 560 robot manipulator, proving qualified efficiency in detecting, isolating, identifying, and tolerant control for faults inherent in sensors and actuators. Experimental results showed that the proposed technique improves the reliability of the fault detection, estimation, identification, and tolerant control.


2019 ◽  
Vol 124 (1273) ◽  
pp. 385-408
Author(s):  
M. Saied ◽  
B. Lussier ◽  
I. Fantoni ◽  
H. Shraim ◽  
C. Francis

ABSTRACTThis paper considers actuator redundancy management for a redundant multirotor Unmanned Aerial Vehicle (UAV) under actuators failures. Different approaches are proposed: using robust control (passive fault tolerance), and reconfigurable control (active fault tolerance). The robust controller is designed using high-order super-twisting sliding mode techniques, and handles the failures without requiring information from a Fault Detection scheme. The Active Fault-Tolerant Control (AFTC) is achieved through redistributing the control signals among the healthy actuators using reconfigurable multiplexing and pseudo-inverse control allocation. The Fault Detection and Isolation problem is also considered by proposing model-based and model-free modules. The proposed techniques are all implemented on a coaxial octorotor UAV. Different experiments with different scenarios were conducted for the validation of the proposed strategies. Finally, advantages, disadvantages, application considerations and limitations of each method are examined through quantitative and qualitative studies.


2012 ◽  
Vol 57 (7) ◽  
pp. 1783-1789 ◽  
Author(s):  
Mirza Tariq Hamayun ◽  
Christopher Edwards ◽  
Halim Alwi

2020 ◽  
Vol 10 (10) ◽  
pp. 3503 ◽  
Author(s):  
Yu-Hsuan Lien ◽  
Chao-Chung Peng ◽  
Yi-Hsuan Chen

This paper aims to propose a strategy for the flight control of quad-rotors under single rotor failure conditions. The proposed control strategy consists of two stages—fault detection (FD) and fault tolerant control (FTC). A dual observer-based strategy for FD and fault estimation is developed. With the combination of the results from both observers, the decision making in whether a fault actually happened or the observed anomaly was caused by an external disturbance could be distinguished. Following the FD result, a control strategy for normal flight, as well as the abnormal one, is presented. The FTC considers a real-time coordinate transformation scheme to manipulate the target angles for the quad-rotor to follow a prescribed trajectory. When a rotor fault happens, it is going to be detected by the dual observers and then the FTC is activated to stabilize the system such that the trajectory following task can still be fulfilled. Furthermore, in order to achieve robust flight in the presence of external wind perturbation, the sliding mode control (SMC) theory is further integrated. Simulations illustrate the effectiveness and feasibility of the proposed method.


Author(s):  
Yang Gao ◽  
Yifei Wu ◽  
Xiang Wang ◽  
Qingwei Chen

In four-motor servo systems, actuator failures influence control performance seriously through huge inertia ratio changes and unknown disturbances. To solve this problem, an adaptive fault-tolerant control scheme based on characteristic modeling and extended state observer is proposed. First, an adaptive sliding mode observer is designed as fault detection part and offers motor information for controller. Second, to simplify complex dynamic model, this servo system is described by a second-order difference equation. This model integrates uncertainties into three time–varying characteristic parameters to reflect system status. Third, a discrete-time extended state observer is applied to restrain system error caused by actuator failure. Then, a fault-tolerant controller is designed based on characteristic model, and its stability is guaranteed in the sense of Lyapunov stability theorem. These four parts make up the adaptive control scheme and its effectiveness in system control, and fault tolerant is evaluated by both simulation and experiment results.


Sign in / Sign up

Export Citation Format

Share Document