scholarly journals Linkage Between In-Stream Total Phosphorus and Land Cover in Chugoku District, Japan: An Ann Approach

2012 ◽  
Vol 60 (1) ◽  
pp. 33-44 ◽  
Author(s):  
Bahman Amiri ◽  
K. Sudheer ◽  
Nicola Fohrer

Linkage Between In-Stream Total Phosphorus and Land Cover in Chugoku District, Japan: An Ann ApproachDevelopment of any area often leads to more intensive land use and increase in the generation of pollutants. Modeling these changes is critical to evaluate emerging changes in land use and their effect on stream water quality. The objective of this study was to assess the impact of spatial patterns in land use and population density on the water quality of streams, in case of data scarcity, in the Chugoku district of Japan. The study employed artificial neural network (ANN) technique to assess the relationship between the total phosphorous (TP) in river water and the land use in 21 river basins in the district, and the model was able to reasonably estimate the TP in the stream water. Uncertainty analysis of ANN estimates was performed using the Monte Carlo framework, and the results indicated that the ANN model predictions are statistically similar to the characteristics of the measured TP values. It was observed that any reduction in forested area or increase in agricultural land in the watersheds may cause the increase of TP concentration in the stream. Therefore, appropriate watershed management practices should be followed before making any land use change in the Chugoku district.

2006 ◽  
Vol 174 (1-4) ◽  
pp. 161-179 ◽  
Author(s):  
T. Tsegaye ◽  
D. Sheppard ◽  
K. R. Islam ◽  
W. Tadesse ◽  
A. Atalay ◽  
...  

2021 ◽  
Vol 13 (19) ◽  
pp. 10519
Author(s):  
Julia Calderón Cendejas ◽  
Lucía Madrid Ramírez ◽  
Jorge Ramírez Zierold ◽  
Julio Díaz Valenzuela ◽  
Martín Merino Ibarra ◽  
...  

The present study explores the impact of different land uses on water quality in a Mexican basin and addresses key mitigation measures, with key measurements made by citizen scientists. The Amanalco-Valle de Bravo Basin reservoir is the major freshwater supply for Mexico City. By measuring physical-chemical and bacteriological parameters in creeks over 21 months and correlating them to land use areas, it was possible to understand the impacts of different land uses (urban, forest, riparian forests, and different agricultural systems) in water quality. The results show that the concentration of E. coli, nitrates, nitrites, total phosphorus, total nitrogen, and total suspended solids were higher than the recommended reference levels, and that average oxygen saturation and alkalinity were lower than the recommended reference levels in most sites. The analysis of the Pearson correlation coefficient showed a strong relationship between water pollution and urban and agricultural land uses, specifically a higher impact of potato cultivation, due to its intensive use of agrochemicals and downhill tilling. There was a clear positive relationship between total forest area and riparian vegetation cover with improved water quality, validating their potential as nature-based solutions for the regulation of water quality. The results of the present study indicate the opportunities that better land management practices generate to ensure communities’ and water ecosystems’ health. This study also highlights the benefits of citizen science as a tool for raising awareness with regard to water quality and nature-based solutions, and as an appropriate tool for participative watershed management.


2019 ◽  
Vol 72 ◽  
pp. 1-17 ◽  
Author(s):  
Britta Schmalz ◽  
Marion Kruse

Knowledge of the interactions of hydrological processes with the landscape are important to understand variations in basic hydrological data for the comprehensive management of basins. Land cover and land use is one essential factor in the assessment of such management problems. In this study in a representative German basin, available land cover and land use data is analysed in correspondence with available hydrological measuring data.The aim of this study is to analyse the relationships between hydrological data and land use and to obtain a monitoring strategy which allows a valuable support to a comprehensive management of river basins.Two spatial scales, the basin Gersprenz and its subbasin Fischbach, are described in detail regarding the variations in electrical conductivity (EC) as a parameter of water quality with high resolution field data from the state-wide monitoring network (12 stations) as well as from own research monitoring (12 stations). The results show that water quality, using EC as an indicator, can be related to land use pattern. From stream source to mouth, there is an increase in anthropogenic impacts and the EC values show an increasing tendency in downstream direction. This anthropogenic impact is due to agricultural use, settlements, commerce and industry areas, and discharges of waste water. The hydrological monitoring will be continued in the future to give the possibility to assess long-term variations on different spatial and temporal scales.


Author(s):  
Jong-Won Lee ◽  
Sang-Woo Lee ◽  
Kyung-Jin An ◽  
Soon-Jin Hwang ◽  
Nan-Young Kim

The extent of anthropogenic land use in watersheds determines the amount of pollutants discharged to streams. This indirectly and directly affects stream water quality and biological health. Most studies have therefore focused on ways to reduce non-point pollution sources to streams from the surrounding land use in watersheds. However, the mechanistic pathways between land use and the deterioration of stream water quality and biological assemblages remain unclear. This study estimated a structural equation model (SEM) representing the impact of agricultural and urban land use on water quality and the benthic macroinvertebrate index (BMI) using IBM AMOS in the Nam-Han river systems, South Korea. The estimated SEM showed that the percent of urban and agricultural land in the watersheds significantly affected both the water quality and the BMI of the streams. Specifically, a higher percent of urban land use had directly increased the biochemical oxygen demand (BOD) and total phosphorus (TP), and deteriorated the BMI of streams. Similarly, higher proportions of agricultural land use had also directly increased the BOD, total nitrogen (TN), and total phosphorus (TP) concentrations, and lowered the BMI of streams. In addition, it was observed that the percent of urban and agricultural land use had indirectly deteriorated the BMI through increased BOD. However, we were not able to observe any significant indirect effect of the percent of urban and agricultural land use through increased nutrients including TN and TP. These results indicate that increased urban and agricultural land use in the watersheds had directly and indirectly affected the physicochemical characteristics and benthic macroinvertebrate communities in streams. Our findings emphasize the need to develop more elaborate environmental management and restoration strategies to improve the water quality and biological status of streams.


1996 ◽  
Vol 180 (1-4) ◽  
pp. 333-350 ◽  
Author(s):  
Pavla Pekárová ◽  
Ján Pekár

Water ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 17
Author(s):  
Abdul Kadir ◽  
Zia Ahmed ◽  
Md. Misbah Uddin ◽  
Zhixiao Xie ◽  
Pankaj Kumar

This study aims to assess the impacts of land use and land cover (LULC) changes on the water quality of the Surma river in Bangladesh. For this, seasonal water quality changes were assessed in comparison to the LULC changes recorded from 2010 to 2019. Obtained results from this study indicated that pH, electrical conductivity (EC), and total dissolved solids (TDS) concentrations were higher during the dry season, while dissolved oxygen (DO), 5-day biological oxygen demand (BOD5), temperature, total suspended solids (TSS), and total solids (TS) concentrations also changed with the season. The analysis of LULC changes within 1000-m buffer zones around the sampling stations revealed that agricultural and vegetation classes decreased; while built-up, waterbody and barren lands increased. Correlation analyses showed that BOD5, temperature, EC, TDS, and TSS had a significant relationship (5% level) with LULC types. The regression result indicated that BOD5 was sensitive to changing waterbody (predictors, R2 = 0.645), temperature was sensitive to changing waterbodies and agricultural land (R2 = 0.889); and EC was sensitive to built-up, vegetation, and barren land (R2 = 0.833). Waterbody, built-up, and agricultural LULC were predictors for TDS (R2 = 0.993); and waterbody, built-up, and barren LULC were predictors for TSS (R2 = 0.922). Built-up areas and waterbodies appeared to have the strongest effect on different water quality parameters. Scientific finding from this study will be vital for decision makers in developing more robust land use management plan at the local level.


Sign in / Sign up

Export Citation Format

Share Document