scholarly journals Description of the transformation of chemical species using a combination of chemical kinetics and chemical equilibrium

2011 ◽  
Vol 9 (3) ◽  
pp. 28-33 ◽  
Author(s):  
Jiří Hvězda

SHRNUTÍ Tato prace prezentuje novy přistup k numericke simulaci chemicke přeměny složek v průběhu hořeni. V připadech abnormalně rychlych chemickych reakci je kineticke schema kombinovano se schematem rovnovažnym. Timto způsobem jsou řešeny važne vypočetni problemy jako je strnulost soustavy rovnic na straně jedne či numericka nestabilita na straně druhe. Navržena procedura je ověřena na připadu hořeni vodiku popsaneho reakčnim mechanismem obsahujicim 23 paralelně probihajicich obecně vratnych reakci. Funkčni sub-model chemicke transformace bude implementovan do vice-zonoveho modelu spalovani pro řešeni chemickych procesů ve frontě plamene a post-plamennych oblastech.

Author(s):  
Dennis Sherwood ◽  
Paul Dalby

Building on the previous chapter, this chapter examines gas phase chemical equilibrium, and the equilibrium constant. This chapter takes a rigorous, yet very clear, ‘first principles’ approach, expressing the total Gibbs free energy of a reaction mixture at any time as the sum of the instantaneous Gibbs free energies of each component, as expressed in terms of the extent-of-reaction. The equilibrium reaction mixture is then defined as the point at which the total system Gibbs free energy is a minimum, from which concepts such as the equilibrium constant emerge. The chapter also explores the temperature dependence of equilibrium, this being one example of Le Chatelier’s principle. Finally, the chapter links thermodynamics to chemical kinetics by showing how the equilibrium constant is the ratio of the forward and backward rate constants. We also introduce the Arrhenius equation, closing with a discussion of the overall effect of temperature on chemical equilibrium.


Author(s):  
Kazui Fukumoto ◽  
Yoshifumi Ogami

This paper describes an application of the partial chemical equilibrium method considered chemical kinetics in computational fluid dynamics (CFD). In this method, fuels and oxidants are mixed at a turbulent rate so that a mixture gas of fuel and oxygen is generated. Next, the mixture gas of fuel and oxygen is burnt by molecular diffusion thereby resulting in combustion gases. The turbulent mixture rate is estimated by the eddy dissipation model and the burning velocity is evaluated by the Arrhenius equation. Finally, the combustion products are calculated by the chemical equilibrium method by using the combustion gases. One of the advantages of this method is its ability to calculate the combustion products without using chemical equations. The chemical equilibrium method requires only thermo-chemical functions (specific heat, standard enthalpy, etc). This method can be applied to incinerators or some complex combustion instruments and it can predict the intermediate chemical species of dioxins, etc.


2015 ◽  
Vol 812 ◽  
pp. 70-78
Author(s):  
S. Natarajan ◽  
A.U. Meeanakshi Sundareswaran ◽  
S. Arun Kumar ◽  
N.V. Mahalakshmi

In this paper the work deals with the computational analysis of early direct injected HCCI engine with turbocharger using the CHEMKIN-PRO software. The computational analysis was carried out in the base of auto ignition chemistry by means of reduced chemical kinetics. For this study the neat diesel and Bio ethanol diesel blend (E20) were used as fuel. The inlet pressure was increased to 1.2 bar to simulate the turbocharged engine operation. The injection time was advanced to 18° before top dead centre (BTDC) i.e., 5° BTDC than normal injection time of 23° BTDC. The equivalence ratio was kept at 0.6 (ɸ=0.6) and the combustion, emission characteristics and chemical kinetics of the combustion reaction were studied. Since pressure and temperature profiles plays a very important role in reaction path at certain operating conditions, an attempt had been made here to present a complete reaction path investigation on the formation/destruction of chemical species at peak temperature and pressure conditions. The result showed that main draw backs of HCCI combustion like higher levels of unburned hydrocarbon emissions and carbon monoxide emissions are reduced in the turbocharged operation of the HCCI engine when compared to normal HCCI engine operation without turbocharger.


2009 ◽  
Author(s):  
Roberto Spinicci

This book is designed as a teaching aid for the first-year students of many University faculties, being conceived for the new type of course set up through the recent reorganisation of university studies. The principal objective is therefore to provide a tool for the study of the basics of chemistry and the classic arguments of a chemistry course, seeking to establish a guiding thread in the treatment of the various subjects. The work is therefore arranged essentially in two sections, so that the student can appreciate, through the study of chemistry, the formation of the resources and materials present on the earth, their energetic and structural properties and their reactivity. The first section is therefore developed through an analysis of the properties of the atomic nucleus, and then through that of the structural properties which explain the stability of the matter. The second section instead addresses the analysis of the reactivity of matter, elaborating the concepts of chemical equilibrium and chemical kinetics.


Author(s):  
John Ross ◽  
Igor Schreiber ◽  
Marcel O. Vlad

Chemical kinetics as a science has existed for more than a century. It deals with the rates of reactions and the details of how a given reaction proceeds from reactants to products. In a chemical system with many chemical species, there are several questions to be asked: What species react with what other species? In what temporal order? With what catalysts? And with what results? The answers constitute the macroscopic reaction mechanism. The process can be described macroscopically by listing the reactants, intermediates, products, and all the elementary reactions and catalysts in the reaction system. The present book is a treatise and text on the determination of complex reaction mechanisms in chemistry and in chemical reaction systems that occur in chemical engineering, biochemistry, biology, biotechnology, and genomics. A basic knowledge of chemical kinetics is assumed. Several approaches are suggested for the deduction of information on the causal chemical connectivity of the species, on the elementary reactions among the species, and on the sequence of the elementary reactions that constitute the reaction pathway and the reaction mechanism. Chemical reactions occur by the collisions of molecules, and such an event is called an elementary reaction for specified reactant and product molecules. A balanced stoichiometric equation for an elementary reaction yields the number of each type of molecule according to conservation of atoms, mass, and charge. Figure 1.1 shows a relatively simple reaction mechanism for the decomposition of ozone by light, postulated to occur in a series of three elementary steps. (The details of collisions of molecules and bond rearrangements are not discussed.) All approaches are based on the measurements of the concentrations of chemical species in the whole reaction system, not on parts, as has been the practice. One approach is called the pulse method, in which a pulse of concentration of one or more species of arbitrary strength is applied to a reacting system and the responses of as many species as possible are measured. From these responses causal chemical connectivities may be inferred. The basic theory is explained, demonstrated on a model mechanism, and tested in an experiment on a part of glycolysis.


Sign in / Sign up

Export Citation Format

Share Document