Static axial crush performance of unfilled and foamed-filled composite tubes

Author(s):  
S. Ochelski ◽  
P. Bogusz ◽  
A. Kiczko
2019 ◽  
Vol 36 (3) ◽  
pp. 305-313
Author(s):  
S. F. Hwang ◽  
H. L. Yu

ABSTRACTThree types of polymer including polyurethane, polyethylene, and polysulfone were used as filler inside composite tubes to evaluate their effects on the crashworthiness. The composite tube consisting of carbon fiber fabric and polyurethane was fabricated by resin transfer molding and subjected to impact loading. In addition, the finite element analysis with progressive failure and delamination was used to simulate the crushing behavior of the polymer-filled composite tube. From the comparison between experiment and simulation, the finite element analysis is reliable, could reasonably describe the crushing behavior of the polymer-filled tube, and has nice prediction on the crashworthiness performance. From both the experiment and simulation results, the polyethylene-filled composite tube has clearly higher specific absorbed energy than the hollow composite tube, and polyethylene could be considered as an effective filler. However, the other two types of polymer filler have no clear effect.


2020 ◽  
Vol 181 ◽  
pp. 107590 ◽  
Author(s):  
Jinbong Kim ◽  
Mungyu Jeong ◽  
Holger Böhm ◽  
Jonas Richter ◽  
Niels Modler

Author(s):  
Alan L. Browne ◽  
Kristin L. Zimmerman

This paper documents the braided reinforcement portion of a successful fundamental study of the dynamic axial crush of automotive rail-sized composite tubes. Braided reinforcements were comprised principally of carbon fiber but also of Kevlar® and E-glass and combinations of the three. Fourteen different braids were used, six of which were tri-axial and the remainder bi-axial. Tubes were manufactured using Resin Transfer Molding (RTM) with processing and molding techniques that are suitable for the low cost high volume needs of the automotive industry. Braids were obtained as continuous rolls of tubular sock-like material and pulled over metal mandrels one ply at a time. Carbon fiber tow sizes ranged from 6k to 48k. Dow Derakane 470 vinylester resin was used for all tubes. Tube geometry, a 88.9×88.9 mm square cross section with 2.54 mm thick walls, approximated that of the first 500 mm of the lower rail of a typical mid-size vehicle. Note in particular that tube wall thickness was fixed at a single value in this study. A 45° bevel on the outside edge of the lead end of each tube served as the crush initiator. In total 71 dynamic axial crush tests were conducted. In terms of important findings, consistent with the woven fabric portion of this program [1], desirable dynamic axial crush response was demonstrated for RTM’d automotive rail-sized carbon fiber reinforced tubes. For almost all parameter configurations, the tubes exhibited stable and progressive crush with a reasonably flat plateau force level and an acceptable crush initiation force, i.e. one that can be withstood by the backup structure. Additionally, crush debris from such tubes was found to neither contain objectionable sharp brittle splinters nor pose a health risk. Displacement average values of dynamic axial crush force ranged from 11.88 to 26.51 kN and values of SEA (specific energy absorption) ranged between 10.42 and 22.44 kJ/kg. In terms of parameter effects, the fiber type and reinforcement architecture were found to be capable of more than doubling/halving the dynamic axial crush force and SEA.


Author(s):  
Alan L. Browne ◽  
Nancy L. Johnson

This paper discusses the effects of the method of crush initiation on the dynamic axial crush response of roll wrapped composite tubes. This constitutes a portion of a successful fundamental study conducted at GM R&D of the dynamic axial crush of automotive rail-sized composite tubes reinforced variously with carbon fiber, Kevlar® and hybrid combinations of the two, and manufactured using roll wrapping techniques suitable for the low cost high volume needs of the automotive industry. All tubes were manufactured using roll wrapping from multiple layers of uni-directional thermoset prepreg with the uni-directional fabric plies being oriented at ± 15° with respect to the longitudinal axis of the tube. A total of 21 dynamic axial crush tests were conducted using a free flight drop tower facility. Tests spanned a range of tube geometries — circular and square with different wall and cross section dimensions with cored and uncored walls and differing numbers of plies — and a range of drop heights/impact velocities and drop masses. A general finding was that stable and progressive crush occurred at acceptable load levels in all of the roll-wrapped tubes that were tested for all methods of crush initiation that were considered — a 45° lead end bevel either alone, with a zero radius plug-type crush initiator, or with a 12.7 mm radius plug. The method of crush initiation was, however, found to be capable of producing major differences in the crush initiation force Fp, the displacement average crush force Fav(D), the specific energy absorption SEA, and the crush morphology. As examples, both the displacement average value of dynamic axial crush force and the value of SEA were changed by as much as a factor of eight by the method of crush initiation.


2017 ◽  
Vol 114 ◽  
pp. 1-10 ◽  
Author(s):  
Seyed Ali Elahi ◽  
Jafar Rouzegar ◽  
Abbas Niknejad ◽  
Hassan Assaee

2021 ◽  
Vol 11 (9) ◽  
pp. 3735
Author(s):  
Kadir Gunaydin ◽  
Aykut Tamer ◽  
Halit Suleyman Turkmen ◽  
Giuseppe Sala ◽  
Antonio Mattia Grande

Our research investigated the energy absorption characteristics of chiral auxetic lattices filled cylindrical composite tubes subjected to a uniaxial and lateral quasi-static load. The lattice structures were manufactured using a 3D printing technique. Carbon fiber composite tubes without filler material were initially subjected to uniaxial and lateral quasi-static crushing load. The same types of experiment were then performed on chiral lattices and chiral lattices filled composite tubes. For the different cases, the load–displacements curves were analyzed and the specific energy absorption (SEA) values were compared. The SEA capability for the axial quasi-static crushing of the chiral lattices filled composite tubes decreased in comparison with the hollow composite design. However, the most significant result was that the average SEA value in the case of lateral loading increased dramatically in comparison with the hollow composite configuration.


Sign in / Sign up

Export Citation Format

Share Document