Developing novel correlations for calculating natural gas thermodynamic properties

2011 ◽  
Vol 32 (4) ◽  
pp. 435-452 ◽  
Author(s):  
Mahmood Farzaneh-Gord ◽  
Hamid Rahbari

Developing novel correlations for calculating natural gas thermodynamic properties Natural gas is a mixture of 21 components and it is widely used in industries and homes. Knowledge of its thermodynamic properties is essential for designing appropriate processes and equipment. This paper presents simple but precise correlations of how to compute important thermodynamic properties of natural gas. As measuring natural gas composition is costly and may not be effective for real time process, the correlations are developed based on measurable real time properties. The real time properties are temperature, pressure and specific gravity of the natural gas. Calculations with these correlations are compared with measured values. The validations show that the average absolute percent deviation (AAPD) for compressibility factor calculations is 0.674%, for density is 2.55%, for Joule-Thomson coefficient is 4.16%. Furthermore, in this work, new correlations are presented for computing thermal properties of natural gas such as enthalpy, internal energy and entropy. Due to the lack of experimental data for these properties, the validation is done for pure methane. The validation shows that AAPD is 1.31%, 1.56% and 0.4% for enthalpy, internal energy and entropy respectively. The comparisons show that the correlations could predict natural gas properties with an error that is acceptable for most engineering applications.

2021 ◽  
Author(s):  
Vadim Goryachikh ◽  
Fahad Alghamdi ◽  
Abdulrahman Takrouni

Abstract Background information Natural gas liquid (NGL) production facilities, typically, utilize turbo-expander-brake compressor (TE) to generate cold for C2+ separation from the natural gas by isentropic expansion of feed stream and use energy absorbed by expansion to compress residue gas. Experience shows that during operational phase TE can exposed to operation outside of design window that may lead to machine integrity loss and consequent impact on production. At the same time, there is a lack of performance indicators that help operator to monitor operating window of the machine and proactively identify performance deterioration. For instance, TE brake compressor side is always equipped with anti-surge protection system, including surge deviation alarms and trip. However, there is often gap in monitoring deviation from stonewall region. At the same time, in some of the designs (2×50% machines) likelihood of running brake compressor in stonewall is high during one machine trip or train start-up, turndown operating modes. Also, typical compressor performance monitoring systems does not have enough dynamic parameters that may indicate machine process process performance deterioration proactively (real-time calculation of actual polytrophic efficiency, absorbed power etc.) and help operator to take action before catastrophic failure occurs. In addition, typical compressor monitoring systems are based on assumed composition and fixed compressibility factor and do not reflect actual compositions variations that may affect machine performance monitoring. To overcome issues highlighted above, Hawiyah NGL (HNGL) team has developed computerized monitoring and advisory system to monitor the performance of turbo-expander-brake compressor, proactively, identify potentially unsafe conditions or performance deterioration and advice operators on taking necessary actions to avoid unscheduled deferment of production. Computerized performance monitoring system has been implemented in HNGL DCS (Yokogawa) and utilized by control room operators on day-to-day basis. Real-time calculation, analysis and outputs produced by performance monitoring system allow operator to understand how current operating condition are far from danger zone. Proactive deviation alarms and guide messages produce by the system in case of deviation help operators to control machine from entering unsafe region. Actual polytrophic efficiency, adsorbed power calculations provide machine condition status and allow identifying long-term performance deterioration trends.


2021 ◽  
Author(s):  
Pan Luo ◽  
Jonathan Harrist ◽  
Rabah Mesdour ◽  
Nathan Stmichel

Abstract Natural gas is sampled or produced throughout the lifespan of a field, including geochemical surface survey, mud gas logging, formation and well testing, and production. Detecting and measuring gas is a common practice in many upstream operations, providing gas composition and isotope data for multiple purposes, such as gas show, petroleum system analysis, fluid characterization, and production monitoring. Onsite gas analysis is usually conducted within a mud gas unit, which is operationally unavailable after drilling. Gas samples need be taken from the field and shipped back to laboratory for gas chromatography and isotope-ratio mass spectrometry analyses. Results take a considerable time and lack the resolution needed to fully characterize the heterogeneity and dynamics of fluids within the reservoir. We are developing and testing advanced sensing technology to move gas composition and isotope analyses to field for near real-time and onsite fluid characterization and monitoring. We have developed a novel QEPAS (quartz-enhanced photoacoustic spectroscopy) sensor system, employing a single interband cascade laser, to measure concentrations of methane (C1), ethane (C2), and propane (C3) in gas phase. The quartz fork detection module, laser driver, and interface are integrated as a small sensing box. The sensor, sample preparation enclosures and a computer are mounted in a rack as a gas analyzer prototype for the bench testing for oil industry application. Software is designed for monitoring sample preparation, collecting data, calibration and continuous reporting sample pressure and concentration data. The sensor achieved an ultimate detection limit of 90 ppb (parts per billion), 7 ppb and 3 ppm (parts per million) for C1, C2, and C3, respectively, for one second integration time. The detection limit for C2 made a record for QEPAS technique, and measuring C3 added a new capability to the technique. However, the linearity of the QEPAS sensing were previously reported in the range of 0 to 1000 ppm, which is mainly for trace gas detection. In the study, the prototype was separately tested on standard C1, C2, and C3 with different concentrations diluted in dry nitrogen (N2). Good linearity was obtained for all single components and the ranges of linearity were expanded to their typical concentrations (per cent, %) in natural gas samples from oil and gas fields. The testing on the C1-C2 mixtures confirms that accurate C1 and C2 concentrations in % level can be achieved by the prototype. The testing results on C1-C2-C3 mixtures demonstrate the capability of simultaneous detection of three hydrocarbon components and the probability to determine their precise concentrations by QEPAS sensing. This advancement of simultaneous measuring C1, C2 and C3 concentrations, with previously demonstrated capability for hydrogen sulfide (H2S) and carbon dioxide (CO2) and potential to analyze carbon isotopes (13C/12C), promotes QEPAS as a prominent optical technology for gas detection and chemical analysis. The capability of measuring multiple gas components and the advantages in small sensor size, high sensitivity, quick analysis, and continuous sensing (monitoring) open the way to use QEPAS technique for in-situ and real-time gas sensing in oil industry. The iterations of QEPAS sensor might be applied in geochemical survey, on-site fluid characterization, time-lapse monitoring of production, and gas linkage detection in the oil industry.


2018 ◽  
Vol 32 (16) ◽  
pp. 1850203
Author(s):  
H. B. Ghassib ◽  
A. S. Sandouqa ◽  
B. R. Joudeh ◽  
I. F. Al-Maaitah ◽  
A. N. Akour ◽  
...  

The thermodynamic properties of neon and argon gases are studied within the static fluctuation approximation (SFA). These properties include the total internal energy, pressure, entropy, compressibility and specific heat. The results are compared with those recently obtained within the Galitskii–Migdal–Feynman (GMF) formalism. The overall agreement is very good. An exception, however, is the specific-heat results for neon. While SFA gives results rather similar to those of the ideal gas, the corresponding GMF results are quite different. It is argued that the discrepancy seems to have arisen from quantum effects in conformity with very recent Monte Carlo computations. Whenever possible, our SFA results are compared to experimental data.


Sign in / Sign up

Export Citation Format

Share Document