scholarly journals Residual Stress Study for Sustainable Structural Integrity Assessment

Author(s):  
S Hossain ◽  
MD Salim Miah ◽  
B Fakhim

Marine structures are susceptible to failure mechanism due to presence of both external and internal loads. A submarine is manufactured with several circular hull sections welded together and forming an entire hull. A hull section consists of several bowed metal sheets welded together and strengthened by T-section rings which are welded at repeated spaces. T-section rings are fabricated using numerous web and flange plates and curved correctly by plastically bending before welding. Fatigue life of a submarine hull is dependent on load produced from hull contraction due to surrounding hydrostatic pressure, as well as residual stress present without any applied load. Numerical simulation can be used to calculate stresses generated from hydrostatic pressure. However, predicting residual stresses resulting from bending and welding processes can be more involved. Moreover, the predicted stresses need to be validated by measurement. Incremental centre-hole drilling (iCHD) is broadly applied technique to measure residual stress. The iCHD technique however is limited to near surface measurement which can contribute to misleading structural integrity assessment. On the other hand an over-conservative estimate of stress due to welding process can lead to reduced life estimate. It is thus imperative to analyse residual stresses accurately and deep into metal parts in order to move away from decade old conservative estimates. This paper reviews various techniques available for analysing residual stress field and considers multiple techniques with an aim to provide an optimum solution.

2011 ◽  
Vol 134 (1) ◽  
Author(s):  
Foroogh Hosseinzadeh ◽  
Muhammed Burak Toparli ◽  
Peter John Bouchard

Welding is known to introduce complex three-dimensional residual stresses of substantial magnitude into pressure vessels and pipe-work. For safety-critical components, where welded joints are not stress-relieved, it can be of vital importance to quantify the residual stress field with high certainty in order to perform a reliable structural integrity assessment. Finite element modeling approaches are being increasingly employed by engineers to predict welding residual stresses. However, such predictions are challenging owing to the innate complexity of the welding process (Hurrell et al., Development of Weld Modelling Guidelines in the UK, Proceedings of the ASME Pressure Vessels and Piping Conference, Prague, Czech Republic, July 26–30, 2009, pp. 481–489). The idea of creating weld residual stress benchmarks against which the performance of weld modeling procedures and practitioners can be evaluated is gaining increasing acceptance. A stainless steel beam 50 mm deep by 10 mm wide, autogenously welded along the 10 mm edge, is a candidate residual stress simulation benchmark specimen that has been studied analytically and for which neutron and synchrotron diffraction residual stress measurements are available. The current research was initiated to provide additional experimental residual stress data for the edge-welded beam by applying, in tandem, the slitting and contour residual stress measurement methods. The contour and slitting results were found to be in excellent agreement with each other and correlated closely with published neutron and synchrotron residual stress measurements when differences in gauge volume and shape were accounted for.


Author(s):  
Foroogh Hosseinzadeh ◽  
P. John Bouchard ◽  
M. Burak Toparli

Welding is known to introduce complex three-dimensional residual stresses of substantial magnitude into pressure vessels and pipe-work. For safety-critical components, where welded joints are not stress-relieved, it can be of vital importance to quantify the residual stress field with high certainty in order to perform a reliable structural integrity assessment. Finite element modeling approaches are being increasingly employed by engineers to predict welding residual stresses. However, such predictions are challenging owing to the innate complexity of the welding process [1]. The idea of creating weld residual stress benchmarks against which the performance of weld modeling procedures and practitioners can be evaluated is gaining increasing acceptance. A stainless steel beam 50 mm deep by 10 mm wide, autogenously welded along the 10 mm edge, is a candidate residual stress simulation benchmark specimen that has been studied analytically and for which neutron and synchrotron diffraction residual stress measurements are available. The current research was initiated to provide additional experimental residual stress data for the edge-welded beam by applying, in tandem, the slitting and contour residual stress measurement methods. The contour and slitting results were found to be in excellent agreement with each other and correlated closely with published neutron and synchrotron residual stress measurements when differences in gauge volume and shape were accounted for.


Author(s):  
Xavier Ficquet ◽  
Karim Serasli ◽  
Ed J. Kingston

Optimising the structural integrity of an oil and gas pipeline is hugely important for its productivity and hence profitability. The structural integrity of a pipeline is influenced by factors such as: stress (i.e. applied and residual), material properties, environment, and the size and orientation of contained flaws. For example, whilst in operation, the integrity of a pipeline can be extended by reducing its applied stresses e.g. the flow and pressure of the oil and gas running within. Prior to operation however the integrity of the pipeline can easily be extended by reducing the residual stresses generated during installation or even “negatively pre-loading” the pipeline using residual stresses to help cancel out some of the applied stresses. Therefore understanding the distribution of residual stresses within a pipeline can be of great benefit to Oil and Gas engineers. In this paper, complementary residual stress measurement techniques are used to obtain near surface and through-thickness residual stress distributions in a fully circumferential butt welded pipe. The deep hole drilling (DHD) method was used to obtain the axial and hoop residual stresses along radial lines through the pipe wall. Near surface measurements on the outer surface of the pipe were obtained using the incremental centre-hole drilling (ICHD) method. The measurements were made only at limited points in and adjacent to the circumferential weld. In order to estimate the complete residual stress field present in the pipe, a mapping procedure utilising a finite element (FE) method was implemented. This entailed introducing the measured residual stresses into a FE model of the pipe as an initial condition and allowing redistribution. Naturally, the stresses at the measurement locations should remain at their initial values. Consequently, the method was developed to allow redistribution while retaining the measured values. The paper provides these estimates of the full residual stress state present in the pipe based on this mapping procedure. The FE model was then used to simulate the influence of various sizes of flaw on the mapped residual stresses field. An assessment of the acceptability of areas of loss of the wall thickness in internally pressurised pressure vessels was then performed.


2012 ◽  
Vol 184-185 ◽  
pp. 649-652
Author(s):  
Gui Fang Guo ◽  
Shi Qiong Zhou ◽  
Liang Wang ◽  
Li Hao ◽  
Ze Guo Liu

The effects of electron beam welding on the residual stresses of welded joints of pure aluminum plate 99.60 are studied by through-hole-drilling and blind-hole-drilling method. Meanwhile, based on the thermal elastic-plastic theory, and making use of ANSYS finite element procedure, a three - dimensional finite element model using mobile heat source of temperature and stresses field of electron beam welding in pure aluminum is established. The welding process is simulated by means of the ANSYS software. The results show that the main residual stress is the longitudinal residual stress, the value of the longitudinal residual stress is much larger than the transverse residual stress. But the residual stress in the thickness is rather small. And in the weld center, the maximum value of residual stresses is lower than its yield strength. The simulation results about the welded residual stresses are almost identical with the experimental results by measuring. So the research result is important to science research and engineering application.


2003 ◽  
Vol 38 (4) ◽  
pp. 349-365 ◽  
Author(s):  
R. C Wimpory ◽  
P. S May ◽  
N. P O'Dowd ◽  
G. A Webster ◽  
D J Smith ◽  
...  

Tensile welding residual stresses can, in combination with operating stresses, lead to premature failure of components by fatigue and/or fracture. It is therefore important that welding residual stresses are accounted for in design and assessment of engineering components and structures. In this work residual stress distributions, obtained from measurements on a number of ferritic steel T-plate weldments using the neutron diffraction technique and the deep-hole drilling method, are presented. It has been found that the residual stress distributions for three different plate sizes are of similar shape when distances are normalized by plate thickness. It has also been found that the conservatisms in residual stress profiles recommended in current fracture mechanics-based safety assessment procedures can be significant—of yield strength magnitude in certain cases. Based on the data presented here a new, less-conservative transverse residual stress upper bound distribution is proposed for the T-plate weldment geometry. The extent of the plastic zone developed during the welding process has also been estimated by use of Vickers hardness and neutron diffraction measurements. It has been found that the measured plastic zone sizes are considerably smaller than those predicted by existing methods. The implications of the use of the plastic zone size as an indicator of the residual stress distributions are discussed.


Author(s):  
Hector Delgado ◽  
Jeff Moore ◽  
Augusto Garcia Hernandez

This paper reports a comparison of two methods to perform residual stress measurements. The specimens tested by each method were two blades from a shrouded centrifugal compressor impeller. The first method is the conventional hole drilling strain gage method which was used to predict residual stresses across the blade surface. The residual stresses are released by drilling a hole in the blade. The second method is called the nonlinear harmonic (NLH) scanning method and is based on the principal that the magnetic domains of ferrous materials vary in a non-linear way relative to internal stress. The effects of residual stress may be either helpful or harmful, depending on the magnitude of the residual with respect to the operating stresses. If not adequately relieved by heat treatment, residual tensile stress that develops in the welding process of shrouded impellers, will add to the stress developed by rotation which moves the point to the right on the Goodman diagram and reduces allowable alternating stress. The results showed comparable residual stress measurements of the NLH method compared to the conventional hole drilling method.


Author(s):  
Ali Mirzaee-Sisan ◽  
P. John Bouchard ◽  
Foroogh Hosseinzadeh

Abstract This paper highlights many unanswered questions relating to the characterisation of residual stresses in weldments and their treatment in engineering critical assessment and fitness for service assessment codes and standards. The need for an overarching standardisation framework is identified which goes beyond developing good practice guidelines for numerical prediction or measurement using a specific technique. The framework should cover all uncertainties and possible errors in measuring, simulating and interpreting residual stress in the context of structural integrity assessment.


Author(s):  
Xavier Ficquet ◽  
Ashley Bowman ◽  
Devkumar Goudar ◽  
Manuel Körner ◽  
Ed J. Kingston

Explicit understanding of the residual stress field of primary submarine pressure hull induced during fabrication will improve the fidelity of numerical analysis and experimentation. Hence, supporting operational envelope and design life extension initiatives. The fatigue lifetime of a submarine hull depends on the loads generated by hull contraction under the effect of hydrostatic pressure and the residual stresses existing in the absence of external loading. The use of numerical simulation allows a straightforward calculation of the stresses induced by the hydrostatic pressure. The effect of residual stress could be determined using the current failure assessment procedures, like BS7910 and R6. However it is more intricate to determine the residual stresses resulting from the sheet bending process combined with the sheet assembly using a multipass welding process. There are several measurement techniques available to measure residual stresses. They are often classified by their level of destructiveness and their penetration.In order to compare the different measurement techniques an elastic-plastic bent beam sample has been chosen as it is very comparable to the residual stress field induced during the sheet bending process used in the submarine structure. Four bent beams have been measured using five different techniques: Incremental centre hole drilling, ring core, neutron diffraction, slitting and deep hole drilling technique. The results from measurement techniques show an excellent agreement when compared with the FEA. In order to measure a full scale Rubis class submarine hull a limited number of techniques can be used, as the technique needs to be portable. The Deep Hole Drilling (DHD) technique was chosen because the neutron diffraction would require extracting a small test sample of about 400mm × 400mm, hence redistributing the residual stresses that were intended to be measured. Six measurements were carried out at different angular positions to detect variability in manufacture on a Rubis class submarine and a probabilistic calculation was done using all six DHD measurements. The Rubis class measurement results are also compared with two other submarine types, found in the literature. Understanding the three-dimensional behaviour of residual stress in this type of structure provides a valuable resource to the numerical modelling community. The results can also support fatigue and fracture experimental work and may help increasing the operating life of 28 year old French nuclear submarine.


2021 ◽  
Author(s):  
Sachin Bhardwaj ◽  
R. M. Chandima Ratnayake

Abstract Residual stress estimation in structural integrity procedures plays an important role during the fitness-for-service (FFS) assessment of girth welds. Various FFS codes and standards, such as API 579 and BS 7910, recommend predetermined residual stress profiles based on finite element modeling (FEM) coupled with experimental results. Nonlinearity associated with non-uniform temperature gradients’ distribution during welding can develop residual stress up to the yield strength of the material, in weld shrinkage and plastic zones. Plastic zone size, shape, and locations are critically important in reducing or controlling final distortions, decreasing the residual stress according to length scale, and defining the optimum sequence of the welding process. However, in practice, estimation of finally developed residual stresses is used in structural integrity procedures for determining the FFS of welded joints. Various FEM models employed in its assessment require large computational time in solving the complex thermo-mechanical phenomenon involved in the welding process. Shrinkage strain models have been found to be fast and effective in determining final residual stresses, once the size, location and shape of the plastic zone can be predetermined. This manuscript demonstrates a comparison between the shrinkage strain method and the moving heat source method, based on transient temperature development as a function of time. The results (or findings) reveal a high compromise between FEM thermo mechanical model and shrinkage strain method in determining final residual stresses with later consuming less computational time. The findings provide significantly important feedback to welded joints’ structural integrity assurance practitioners.


Author(s):  
Xavier Ficquet ◽  
Vincent Robin ◽  
Ed Kingston ◽  
Stéphan Courtin ◽  
Miguel Yescas

This paper presents results from a programme of through thickness residual stress measurements and finite element analysis (FEA) modelling carried out on a temper bead mock-up. Emphasis is placed on results comparison rather than the measurement technique and procedure, which is well documented in the accompanying references. Temper bead welding processes have been developed to simulate the tempering effect of post-weld heat treatment and are used to repair reactor pressure vessel components to alleviate the need for further heat-treatment. The Temper Bead Mock-up comprised of a rectangular block with dimension 960mm × 189mm × 124mm was manufactured from a ferritic steel forged block with an austenitic stainless steel buttering and a nickel alloy temper bead cladding. The temper bead and buttering surfaces were machined after welding. Biaxial residual stresses were measured at a number of locations using the standard Deep-Hole Drilling (DHD) and Incremental DHD (iDHD) techniques on the Temper Bead Mock-up and compared with FEA modelling results. An excellent correlation existed between the iDHD and the modelled results, and highlighted the need for the iDHD technique in order to account for plastic relaxation during the measurement process. Maximum tensile residual stresses through the thickness were observed near the austenitic stainless steel surface at 298MPa. High compressive stresses were observed within the ferritic base plate beneath the bimetallic interface between austenitic and ferritic steels with peak stresses of −377MPa in the longitudinal direction.


Sign in / Sign up

Export Citation Format

Share Document