Standardisation on Measurement and Interpretation of Residual Stress Data

Author(s):  
Ali Mirzaee-Sisan ◽  
P. John Bouchard ◽  
Foroogh Hosseinzadeh

Abstract This paper highlights many unanswered questions relating to the characterisation of residual stresses in weldments and their treatment in engineering critical assessment and fitness for service assessment codes and standards. The need for an overarching standardisation framework is identified which goes beyond developing good practice guidelines for numerical prediction or measurement using a specific technique. The framework should cover all uncertainties and possible errors in measuring, simulating and interpreting residual stress in the context of structural integrity assessment.

2011 ◽  
Vol 70 ◽  
pp. 297-302 ◽  
Author(s):  
Steve K. Bate ◽  
P. John Bouchard

The continued safe and reliable operation of plant invariably has to consider the assessment of defects in welded structural components. This requires some estimate of the residual stresses that have developed during the welding fabrication process. For as-welded structures these stresses can be of yield magnitude. Engineering critical assessment procedures such as R6, BS 7910, FITNET and API 579-1 provide simplified estimates, bounding profiles or advice on detailed analysis or measurement which can be applied to provide conservative estimates of the remaining life of plant. The use of finite element analysis (FEA) is being applied more frequently to predict residual stresses in welded components for assessment purposes. This calculation involves complex non-linear analyses with many assumptions. As a consequence, the accuracy and reliability of solutions is variable. In order to improve the consistency of weld modelling, and hence the accuracy and confidence in their use, a set of Guidelines covering the calculation of residual stresses have been developed. The residual stress calculations need to be validated before the results can be used in assessments and guidance on how to demonstrate the required standard of validation proof is provided with these Guidelines. The level of validation required, depends on the problem being solved and the sensitivity of the assessment to the presence of residual stress. For example a high level of validation may be required for assessments of safety critical plant. To support these calculations, measurements are required and a series of ‘Weld Residual Stress Benchmarks’, describing welded mock-ups which have been measured using various measurement techniques, are being collated which the users can then refer to when validating their finite element modelling techniques and thus provide a greater confidence in the predicted results.


Author(s):  
Paulo Orrock ◽  
David J. Smith ◽  
Christopher E. Truman

For nuclear welded components the complex nature of the residual stresses involved means it is often advantageous to produce mock-ups in order that the structural integrity and performance may be assessed. The weight and size of these components can make the production of mock-ups prohibitively expensive, and so the use of scaled models is considered here. Numerical analysis and finite element simulations have been carried out to investigate the scaling laws encountered affecting the applied loads, stress fields and crack driving forces that are of interest in the full sized component. To illustrate the effects of scaling we consider the introduction of a residual stress through prior plastic deformation in rectangular beams of different sizes. A simple scaling law provides the loads required to introduce the same magnitude and distribution of residual stresses in different sized specimens. This is pertinent to uncracked beams. In contrast, if a crack is introduced this scaling law is no longer applicable and the stress intensity factor associated with residual and applied stresses differ for different sized specimens. Alternatively, to create the same crack driving force in different sized specimens different initial residual stress fields are required. The implications of these findings are discussed in the context of future work.


2011 ◽  
Vol 134 (1) ◽  
Author(s):  
Foroogh Hosseinzadeh ◽  
Muhammed Burak Toparli ◽  
Peter John Bouchard

Welding is known to introduce complex three-dimensional residual stresses of substantial magnitude into pressure vessels and pipe-work. For safety-critical components, where welded joints are not stress-relieved, it can be of vital importance to quantify the residual stress field with high certainty in order to perform a reliable structural integrity assessment. Finite element modeling approaches are being increasingly employed by engineers to predict welding residual stresses. However, such predictions are challenging owing to the innate complexity of the welding process (Hurrell et al., Development of Weld Modelling Guidelines in the UK, Proceedings of the ASME Pressure Vessels and Piping Conference, Prague, Czech Republic, July 26–30, 2009, pp. 481–489). The idea of creating weld residual stress benchmarks against which the performance of weld modeling procedures and practitioners can be evaluated is gaining increasing acceptance. A stainless steel beam 50 mm deep by 10 mm wide, autogenously welded along the 10 mm edge, is a candidate residual stress simulation benchmark specimen that has been studied analytically and for which neutron and synchrotron diffraction residual stress measurements are available. The current research was initiated to provide additional experimental residual stress data for the edge-welded beam by applying, in tandem, the slitting and contour residual stress measurement methods. The contour and slitting results were found to be in excellent agreement with each other and correlated closely with published neutron and synchrotron residual stress measurements when differences in gauge volume and shape were accounted for.


Author(s):  
Foroogh Hosseinzadeh ◽  
P. John Bouchard ◽  
M. Burak Toparli

Welding is known to introduce complex three-dimensional residual stresses of substantial magnitude into pressure vessels and pipe-work. For safety-critical components, where welded joints are not stress-relieved, it can be of vital importance to quantify the residual stress field with high certainty in order to perform a reliable structural integrity assessment. Finite element modeling approaches are being increasingly employed by engineers to predict welding residual stresses. However, such predictions are challenging owing to the innate complexity of the welding process [1]. The idea of creating weld residual stress benchmarks against which the performance of weld modeling procedures and practitioners can be evaluated is gaining increasing acceptance. A stainless steel beam 50 mm deep by 10 mm wide, autogenously welded along the 10 mm edge, is a candidate residual stress simulation benchmark specimen that has been studied analytically and for which neutron and synchrotron diffraction residual stress measurements are available. The current research was initiated to provide additional experimental residual stress data for the edge-welded beam by applying, in tandem, the slitting and contour residual stress measurement methods. The contour and slitting results were found to be in excellent agreement with each other and correlated closely with published neutron and synchrotron residual stress measurements when differences in gauge volume and shape were accounted for.


2019 ◽  
Author(s):  
S Hossain ◽  
MD Salim Miah ◽  
B Fakhim

Marine structures are susceptible to failure mechanism due to presence of both external and internal loads. A submarine is manufactured with several circular hull sections welded together and forming an entire hull. A hull section consists of several bowed metal sheets welded together and strengthened by T-section rings which are welded at repeated spaces. T-section rings are fabricated using numerous web and flange plates and curved correctly by plastically bending before welding. Fatigue life of a submarine hull is dependent on load produced from hull contraction due to surrounding hydrostatic pressure, as well as residual stress present without any applied load. Numerical simulation can be used to calculate stresses generated from hydrostatic pressure. However, predicting residual stresses resulting from bending and welding processes can be more involved. Moreover, the predicted stresses need to be validated by measurement. Incremental centre-hole drilling (iCHD) is broadly applied technique to measure residual stress. The iCHD technique however is limited to near surface measurement which can contribute to misleading structural integrity assessment. On the other hand an over-conservative estimate of stress due to welding process can lead to reduced life estimate. It is thus imperative to analyse residual stresses accurately and deep into metal parts in order to move away from decade old conservative estimates. This paper reviews various techniques available for analysing residual stress field and considers multiple techniques with an aim to provide an optimum solution.


2008 ◽  
Vol 41-42 ◽  
pp. 391-400 ◽  
Author(s):  
Lyndon Edwards ◽  
Mike C. Smith ◽  
Mark Turski ◽  
Michael E. Fitzpatrick ◽  
P. John Bouchard

The safe operation of both thermal and nuclear power plant is increasingly dependent upon structural integrity assessment of pressure vessels and piping. Furthermore, structural failures most commonly occur at welds so the accurate design and remnant life assessment of welded plant is critical. The residual stress distribution assumed in defect assessments often has a deciding influence on the analysis outcome, and in the absence of accurate and reliable knowledge of the weld residual stresses, the design codes and procedures use assumptions that yield very conservative assessments that can severely limit the economic life of some plant. However, recent advances in both the modeling and measurement of residual stresses in welded structures and components open up the possibility of characterising weld residual stresses in operating plant using state-of–the–art fully validated Finite Element simulations. This paper describes research undertaken to predict residual stresses in stainless steel welds in order to provide validated reliable, accurate Structural Integrity assessment of nuclear power plant components


Author(s):  
A. H. Sherry ◽  
M. R. Goldthorpe ◽  
J. Fonseca ◽  
K. Taylor

Residual stresses are internal stresses generated during the fabrication and/or operation of engineering structures. Such stresses can provide the major element of the driving force for crack initiation and growth. Structural integrity assessment procedures, provide guidance for the assessment of defects located within regions of high residual stress. However, such guidance may be conservative where the defect develops progressively during service. This paper describes recent experimental and numerical work aimed at quantifying such conservatisms and providing improved guidance for undertaking more realistic analyses. The results demonstrate that pre-loaded compact-tension specimens provide a useful means for studying the behaviour of cracks within residual stress fields. The magnitude of calculated crack driving forces due to residual stresses is influenced by the approach used to introduce cracks into the stress field, with progressive cracks providing lower levels of crack driving force than instantaneously introduced cracks. The J R-curve associated with cracks under primary or combined primary + secondary loading can apparently be rationalized when the total crack driving force is calculated using methods that take proper account of the influence of prior plasticity on the J-integral. However, it is noted that due to differences in the form of the crack-tip stress and strain fields for static and growing cracks, such values of J may be path dependent and influenced by the magnitude of the growth increment.


Author(s):  
Anais Jacob ◽  
Jeferson Araujo de Oliveira ◽  
Ali Mehmanparast ◽  
Foroogh Hosseinzadeh ◽  
Filippo Berto

A key challenge in the Offshore Wind industry is assuring the life-cycle structural integrity of wind turbine foundation monopiles. This is due to harsh environmental aspects as well as the loading regime (i.e. constant exposure to wave and wind forces introducing both fatigue and corrosion damage). Welding is a widely used joining technique for the manufacturing of offshore monopile structures. However, this is an aggressive process that introduces high levels of residual stress, which in turn may lead to reduced fatigue life, corrosion cracking resistance and accelerated degradation mechanisms. This study presents evidence that a measurement-informed strategy could be used towards developing a more reliable structural integrity assessment procedure for offshore monopile structures by taking into account the effect of residual stresses. A welded mock-up, 90 mm thick, 2600 mm wide and 800 mm long plate, was fabricated using a typical double-V welding procedure following current industrial practice. The contour method of residual stress measurement was employed to map residual stresses in the welded mock-up as well as in the CT specimens extracted from the weld region of the plate for future fatigue tests. Residual stress measurement results show that the mock-up plate contained tensile residual stresses above yield in the core of the weld, while the extracted CT specimens had lower though still significant residual stress levels. These results indicate that if the initial residual stresses are not carefully considered during fatigue or corrosion cracking tests, the results from the CT specimens alone will likely result in misleading structural life estimations.


Author(s):  
Brahim Nadri ◽  
Peter J. Bouchard ◽  
Christopher E. Truman ◽  
David J. Smith

Thermal and mechanical processes during welding introduce complex three-dimensional distributions of residual stress. Management of residual stresses represents a major challenge for engineers in order to achieve safe and reliable operation of existing engineering plants. Consideration of how such stresses vary through the wall within welded components is critical in structural integrity assessments. Development of more accurate and realistic weld residual stress profiles through statistical analysis of high quality measured data is highly desirable. This can not be achieved without adequate interpretation of measured weld residual stress data through the development of an appropriate framework. This paper proposes a framework for analysing measured data at four levels of complexity depending on its spatial distribution. The framework provides clear guidance on how to perform appropriate statistical analyses of residual stress data and proposes how to deal with some practical issues that may arise from various stress measurements; for example the gauge size, spatial distribution, measurement uncertainties and data analysis assumptions. Parts of the proposed framework are then applied to measured stress data in a simple welded laboratory test specimen.


Author(s):  
Yeol Choi ◽  
Dongil Son ◽  
Jae-Il Jang ◽  
Joon Park ◽  
Woo-Sik Kim ◽  
...  

Structural integrity assessment is indispensable for preventing catastrophic failure of industrial structures/components/facilities that are faced with time-dependent and environmentally-accelerated degradation. This diagnosis of operating components should be done periodically for safe maintenance and economical repair. However, conventional standard methods for mechanical properties have the problems of bulky specimen, destructive and complex procedure of specimen sampling. So, an advanced indentation technique has been developed as a potential method for non-destructive testing of in-field structures. This technique measures indentation load-depth curve during indentation and analyzes the mechanical properties related to deformation such as yield strength, tensile strength and work-hardening index. Also the advanced indentation technique can evaluate residual stresses based on the concept that indentation load-depth curves were shifted with the direction and the magnitude of residual stress applied to materials. In this study, we characterized the tensile properties and welding residual stress of various Industrial pipeline steels through the new techniques, and the results are introduced and discussed.


Sign in / Sign up

Export Citation Format

Share Document