scholarly journals Estimation of Creep Limit of Screw Joints between Timber and Structural Plywood under Constant Shear Loading

2020 ◽  
Vol 66 (4) ◽  
pp. 187-194
Author(s):  
Keita Ogawa ◽  
Kenji Kobayashi
Author(s):  
JT Stephen ◽  
MB Marshall ◽  
R Lewis

Bolted joints are widely used in a variety of engineering applications where they are dynamically loaded with frequencies of vibration spread over a wide spectrum with the same general effects. When under dynamic loading, bolted joints can become loose due to a loss in clamping pressure in the joints. This vibrational loosening sometimes can cause serious problems, and in some cases can lead to fatal consequences if it remains undetected. Non-intrusive ultrasonic and image processing techniques were simultaneously used to investigate the relaxation of contact pressure and loosening of bolted joints subjected to cyclic shear loading. Three critical areas, the contact interface of the bolted component, the bolt length and the rotation of the bolt head, were monitored during loosening of the joints. The results show that loosening of bolted joints can be grouped into three stages: very rapid, rapid, and gradual loosening. The earliest stage of the loosening of bolted joints is characterised by cyclic strain ratcheting–loosening of the bolted joint during vibration without rotation of the bolt head. The higher the rate of relaxation at this early stage, the lower is the resistance of the bolted joint to vibration-induced loosening. Both the dynamic shear load and an additional constant shear load in another direction were observed to affect the rate of loosening, and at this early stage, a rise in the magnitude of the additional constant shear load increases the rate of loosening. Furthermore, the contact pressure distribution affects the rate of loosening at the bolted joint interface, as loosening increases away from area of high contact pressure.


2021 ◽  
Vol 147 (3) ◽  
pp. 04020177
Author(s):  
Daniela Dominica Porcino ◽  
Theodoros Triantafyllidis ◽  
Torsten Wichtmann ◽  
Giuseppe Tomasello

PCI Journal ◽  
1996 ◽  
Vol 41 (3) ◽  
pp. 64-80 ◽  
Author(s):  
Khaled A. Soudki ◽  
Jeffrey S. West ◽  
Sami H. Rizkalla ◽  
Bruce Blackett

2008 ◽  
Vol 131 (2) ◽  
Author(s):  
Zengliang Gao ◽  
Tianwen Zhao ◽  
Xiaogui Wang ◽  
Yanyao Jiang

Uniaxial, torsion, and axial-torsion fatigue experiments were conducted on a pressure vessel steel, 16MnR, in ambient air. The uniaxial experiments were conducted using solid cylindrical specimens. Axial-torsion experiments employed thin-walled tubular specimens subjected to proportional and nonproportional loading. The true fracture stress and strain were obtained by testing solid shafts under monotonic torsion. Experimental results reveal that the material under investigation does not display significant nonproportional hardening. The material was found to display shear cracking under pure shear loading but tensile cracking under tension-compression loading. Two critical plane multiaxial fatigue criteria, namely, the Fatemi–Socie criterion and the Jiang criterion, were evaluated based on the experimental results. The Fatemi–Socie criterion combines the maximum shear strain amplitude with a consideration of the normal stress on the critical plane. The Jiang criterion makes use of the plastic strain energy on a material plane as the major contributor to the fatigue damage. Both criteria were found to correlate well with the experiments in terms of fatigue life. The predicted cracking directions by the criteria were less satisfactory when comparing with the experimentally observed cracking behavior under different loading conditions.


Sign in / Sign up

Export Citation Format

Share Document