18. Comparing Relationships between Plant Body Sizes and Minimum Reproductive Threshold Sizes for Species of Contrasting Life History

Author(s):  
John Serafini

Two traits are fundamental in defining plant life history strategies: How big can a species get? And how big does it need to get before it can reproduce? Previous research has shown that there is a general positive relationship between these two traits, across species, and this can be accounted for as a trade-off. In this project, I explored whether this relationship differs among herbaceous species with perennial versus annual or biennial life histories. Perennials, because of their capacity to grow across several years, might generally be expected to display a relatively large MAX (maximum potential body size) and hence large MIN (minimum reproductive threshold size) compared with annuals or biennials that live only one or two years. In addition, annuals/biennials might be expected generally to have a smaller MIN for a given MAX, compared with perennials because of selection in the ancestral past — i.e. in frequently disturbed habitats, where annuals and biennials are common, predictable early death (from disturbance) has imposed strong selection to produce at least some offspring quickly, regardless of how small/suppressed the plant might be. I tested these predictions for resident plants sampled from natural populations of 105 species found in the vicinity of Kingston, Ontario. Remarkably, the results support neither prediction, and point to an alternative consequence of selection in shaping plant life history strategies; i.e. small MIN for a given MAX has also been favoured in perennials but for a different reason — as a strategy for competitive fitness.

mBio ◽  
2013 ◽  
Vol 4 (4) ◽  
Author(s):  
Haiwei Luo ◽  
Miklós Csűros ◽  
Austin L. Hughes ◽  
Mary Ann Moran

ABSTRACT Marine bacteria in the Roseobacter and SAR11 lineages successfully exploit the ocean habitat, together accounting for ~40% of bacteria in surface waters, yet have divergent life histories that exemplify patch-adapted versus free-living ecological roles. Here, we use a phylogenetic birth-and-death model to understand how genome content supporting different life history strategies evolved in these related alphaproteobacterial taxa, showing that the streamlined genomes of free-living SAR11 were gradually downsized from a common ancestral genome only slightly larger than the extant members (~2,000 genes), while the larger and variably sized genomes of roseobacters evolved along dynamic pathways from a sizeable common ancestor (~8,000 genes). Genome changes in the SAR11 lineage occurred gradually over ~800 million years, whereas Roseobacter genomes underwent more substantial modifications, including major periods of expansion, over ~260 million years. The timing of the first Roseobacter genome expansion was coincident with the predicted radiation of modern marine eukaryotic phytoplankton of sufficient size to create nutrient-enriched microzones and is consistent with present-day ecological associations between these microbial groups. We suggest that diversification of red-lineage phytoplankton is an important driver of divergent life history strategies among the heterotrophic bacterioplankton taxa that dominate the present-day ocean. IMPORTANCE One-half of global primary production occurs in the oceans, and more than half of this is processed by heterotrophic bacterioplankton through the marine microbial food web. The diversity of life history strategies that characterize different bacterioplankton taxa is an important subject, since the locations and mechanisms whereby bacteria interact with seawater organic matter has effects on microbial growth rates, metabolic pathways, and growth efficiencies, and these in turn affect rates of carbon mineralization to the atmosphere and sequestration into the deep sea. Understanding the evolutionary origins of the ecological strategies that underlie biochemical interactions of bacteria with the ocean system, and which scale up to affect globally important biogeochemical processes, will improve understanding of how microbial diversity is maintained and enable useful predictions about microbial response in the future ocean.


2013 ◽  
Vol 111 (2) ◽  
pp. 740-745 ◽  
Author(s):  
P. B. Adler ◽  
R. Salguero-Gomez ◽  
A. Compagnoni ◽  
J. S. Hsu ◽  
J. Ray-Mukherjee ◽  
...  

1992 ◽  
Vol 49 (10) ◽  
pp. 2196-2218 ◽  
Author(s):  
Kirk O. Winemiller ◽  
Kenneth A. Rose

Interspecific patterns of fish life histories were evaluated in relation to several theoretical models of life-history evolution. Data were gathered for 216 North American fish species (57 families) to explore relationships among variables and to ordinate species. Multivariate tests, performed on freshwater, marine, and combined data matrices, repeatedly identified a gradient associating later-maturing fishes with higher fecundity, small eggs, and few bouts of reproduction during a short spawning season and the opposite suite of traits with small fishes. A second strong gradient indicated positive associations between parental care, egg size, and extended breeding seasons. Phylogeny affected each variable, and some higher taxonomic groupings were associated with particular life-history strategies. High-fecundity characteristics tended to be associated with large species ranges in the marine environment. Age at maturation, adult growth rate, life span, and egg size positively correlated with anadromy. Parental care was inversely correlated with median latitude. A trilateral continuum based on essential trade-offs among three demographic variables predicts many of the correlations among life-history traits. This framework has implications for predicting population responses to diverse natural and anthropogenic disturbances and provides a basis for comparing responses of different species to the same disturbance.


2015 ◽  
Author(s):  
Tutku Aykanat ◽  
Susan E Johnston ◽  
Panu Orell ◽  
Eero Niemelä ◽  
Jaakko Erkinaro ◽  
...  

Despite decades of research assessing the genetic structure of natural populations, the biological meaning of low yet significant genetic divergence often remains unclear due to a lack of associated phenotypic and ecological information. At the same time, structured populations with low genetic divergence and overlapping boundaries can potentially provide excellent models to study adaptation and reproductive isolation in cases where high resolution genetic markers and relevant phenotypic and life history information are available. Here, we combined SNP-based population inference with extensive phenotypic and life history data to identify potential biological mechanisms driving fine scale sub-population differentiation in Atlantic salmon (Salmo salar) from the Teno River, a major salmon river in Europe. Two sympatrically occurring sub-populations had low but significant genetic differentiation (FST = 0.018) and displayed marked differences in the distribution of life history strategies, including variation in juvenile growth rate, age at maturity and size within age classes. Large, late-maturing individuals were virtually absent from one of the two sub-populations and there were significant differences in juvenile growth rates and size-at-age after oceanic migration between individuals in the respective sub-populations. Our findings suggest that different evolutionary processes affect each sub-population and that hybridization and subsequent selection may maintain low genetic differentiation without hindering adaptive divergence.


Author(s):  
Jan Slingenbergh

It remains poorly understood how the life history strategies and transmission ecologies of viruses of plants, arthropods, and vertebrates are interrelated. The present analysis hinges on the virus transmission success. Virus transmission reflects where in the host-body viruses are retained or replicating. Plants, arthropods, and vertebrates share a protective outer-layer, a circulatory system, and reproductive organs. The latter enables vertical virus transmission and associates with virus-host mutualism. Two broadly opposing virus life history strategies are considered. Acute viruses tend to be replicative and are swiftly transmitted to the next host. Instead, persistent viruses keep virus replicating costs and host damage to a minimum. The intertwined life histories and transmission ecologies are accordingly pieced together, based on the virus mono- or instead dual-host tropism, the location of virus retention or replication on or in the host-body, the presence of cyclical or mechanical transmission by arthropods, and of horizontal and vertical host-to-host transmission modes. It is shown that in the arthropod and in the vertebrate animal host, virus circulation in the hemocoel or blood circulation goes hand-in-hand with vertical transmission. Instead, plant phloem viruses do not transmit via seed. The latter is the rule for the plant-only viruses. The risk management implications are discussed in brief.


2019 ◽  
Vol 224 (4) ◽  
pp. 1490-1503 ◽  
Author(s):  
Sally Archibald ◽  
Gareth P. Hempson ◽  
Caroline Lehmann

2015 ◽  
Vol 370 (1673) ◽  
pp. 20140234 ◽  
Author(s):  
Hanna Kokko ◽  
Michael E. Hochberg

Studies of body size evolution, and life-history theory in general, are conducted without taking into account cancer as a factor that can end an organism's reproductive lifespan. This reflects a tacit assumption that predation, parasitism and starvation are of overriding importance in the wild. We argue here that even if deaths directly attributable to cancer are a rarity in studies of natural populations, it remains incorrect to infer that cancer has not been of importance in shaping observed life histories. We present first steps towards a cancer-aware life-history theory, by quantifying the decrease in the length of the expected reproductively active lifespan that follows from an attempt to grow larger than conspecific competitors. If all else is equal, a larger organism is more likely to develop cancer, but, importantly, many factors are unlikely to be equal. Variations in extrinsic mortality as well as in the pace of life—larger organisms are often near the slow end of the fast–slow life-history continuum—can make realized cancer incidences more equal across species than what would be observed in the absence of adaptive responses to cancer risk (alleviating the so-called Peto's paradox). We also discuss reasons why patterns across species can differ from within-species predictions. Even if natural selection diminishes cancer susceptibility differences between species, within-species differences can remain. In many sexually dimorphic cases, we predict males to be more cancer-prone than females, forming an understudied component of sexual conflict.


Sign in / Sign up

Export Citation Format

Share Document